
DepthDepth--Driven Verification Driven Verification
of Simultaneous Interfacesof Simultaneous Interfaces

Ilya Wagner, Valeria Ilya Wagner, Valeria BertaccoBertacco, Todd Austin, Todd Austin
Advanced Computer Architecture LabAdvanced Computer Architecture Lab

University of MichiganUniversity of Michigan

Motivation

� SoCs are becoming the most often used design

SoC – Verification Challenge

� Multiple sub-blocks designed by different people

� All rely on adherence to communication protocols

� Need scalable and flexible framework to verify
communication between components

sy
st

em
 b

usCPU USB controller

Memory
controller

Graphics
controller

Example Design
� A bus arbitrator

� Challenge: Verify corner cases of input interaction
� High-priority input during a low priority transaction
� Two simultaneous high-priority inputs

CPU input

GPU input

System bus

Memory

USB input

Arbitrator

Traditional Verification Methodology

� Limitations
�Open-loop test generators suffer from low design coverage
�Hard to specify tests for complex corner cases with

concurrent transactions

Contributions
� Enable verification of SoC designs

� Fits in traditional verification methodology
� Feed-back based verification system
� Template language

� Specify complex corner cases with concurrent transactions
on parallel interfaces

� Hierarchical modeling environment
� Goal-sensitive feedback metrics

� Depth analysis of circuit structure

Our Verification Methodology

Markov Model
� Markov Model:

� Directed Graph
� Edge labels are

probabilities of transition

� Vertices:
� Low-level interface

commands
� High-level scenario

steps

p0=0.05

p1=0.6 p2=0.35

6pi ���

send_one

burst idle

Hierarchical Markov Model

High-level Markov Model

Low level Markov Models

send_one burst

send

CPU_port GPU_port Design

request sendrequest send

IQTest: Template Files

Template Files
� Flexible and simple language for specifying the

interface

� Use simple constructs to represent a sequence of
inputs or a sequence of scenario steps

� Variables pass information deterministically or
probabilistically

Example Template

� shared_var used for
communication between
local models

� cmd used for signaling
to local models

� Only one description of
local model needed

/ Global Variables /
global { shared_var; }

/ Global Markov Model /
TopModel (global) {

cmd [1:0] = { in0, in1 };
vertex (send_one) { … }
vertex(burst) { … } }

/ Local Markov model /
local1 {

using global::shared_var;
vertex (send) { … }
vertex (request) { … } }

/ Binding /
dut.CPU_port : local1(in0);
dut.GPU_port : local1(in1);

IQTest: Activity Analysis

Activity Signals and Analyzer
� Used to steer the test generation towards corner-

case scenarios
� Edges in Markov model reinforced from feedback values

� Internal nodes in the design representing critical
activities
� Port collision signal in network switch
� Interrupt / branch mispredict in a microprocessor

Activity Signals and Analyzer
� Previous research used a handful of key activity

signals

� The feedback was too coarse
� Prevented exploration of different scenarios

� All signals were user-selected
� No information was drawn from design itself

Depth-Driven Activity Monitoring

� User-specified signals are used to extract more
feedback signals

Depth 0

Depth-Driven Activity Monitoring

� User-specified signals are used to extract more
feedback signals

Depth 1 Depth 0

Depth-Driven Activity Monitoring

� User-specified signals are used to extract more
feedback signals

Depth 2 Depth 0Depth 1

Depth-Driven Activity Monitoring

� User-specified signals are used to extract more
feedback signals
� Backward traversal of RTL logic
� Assign “depth” values to logic driving signals
� Assign weight proportional to the depth

Depth 2 Depth 1 Depth 0

Depth-Driven Activity Monitoring

� Property output is used only for correctness check

IQTest

Related Work
Bayesian Networks:

S. Fine and A. Ziv. “Coverage directed test generation for functional
verification using Bayesian networks” DAC 2003
Markov Models:

S. Tasiran, F. Fallah, D. G. Chinnery, S. J. Weber, and K. Keutzer. “A
functional validation technique: Biased-random simulation guided by
observability-based coverage”. ICCD 2001

Weighted BDDs:

K. Shimizu and D. Dill. “Deriving a simulation input generator and a
coverage metric from a formal specification.” DAC 2002

Our previous work:

I. Wagner, V. Bertacoo, T. Austin. “Stresstest: An automatic approach to
test generation via activity monitors.” DAC 2005

- No hierarchical specification, no depth-driven feedback

Experimental Setup
� Compared IQTest to StressTest and Random
� Implemented IQTest feedback of depths 1,2,3
� Run 25 times each design with different random seeds
� Maximum search effort for each bug is at most 75000 cycles

IQTest

Random
Seeds

Simulation

DUT

No

Buggy
Cores

Golden
Model

Bug Found?

Record
Effort

Yes

Choose a
different seed

Designs Under Test
� DLX Core

� MIPS-lite ISA 5 stage pipeline
� 30 buggy cores (easy-moderately hard)

� Alpha Core
� Alpha 5 stage pipeline
� 10 buggy cores (hard)

� Switch
� 5x5 crossbar logic /w input buffers
� 3 virtual channels per input
� Adaptive cut-through routing version
� 10 bugs (easy-hard)

Results: DLX pipeline

� Depth-2 performs best for harder bugs
� Similar in Alpha

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
bugs

D

LX
 in

st
ru

ct
io

ns

Random
Depth-0 (StressTest)
Depth-1
Depth-2
Depth-3

Results: Alpha pipeline

� Depth-2 performs best for harder bugs

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8
bugs

D

E
C

 A
lp

ha
 in

st
ru

ct
io

ns

Random
Depth-0 (StressTest)
Depth-1
Depth-2
Depth-3

Results: Switch Design

� StressTest cannot be used on this design!
� Found 3 actual bugs in the design

� Hard corner cases that slipped through Random testing

0

10000

20000
30000

40000
50000

1 2 3 4 5 6 7
bugs

tr

an
si

tio
ns Random

Depth-0
Depth-1

IQTest finds more bugs faster
� Key contributions

� Hierarchical modeling environment
� Allows for verification of multiple simultaneous interfaces
� High-level models to specify scenarios
� Low-level models to specify interfaces and stimuli

� Depth-driven quality evaluation
� User points to key signals in the design
� Logic influencing the key signals is used for feedback
� Increased quality of feedback with depth

Current work

� Adding numeric coverage metric to IQTest

� Enhancing feedback mechanism

� Generating more complex scenarios

