
DepthDepth--Driven Verification Driven Verification
of Simultaneous Interfacesof Simultaneous Interfaces

Ilya Wagner, Valeria Ilya Wagner, Valeria BertaccoBertacco, Todd Austin, Todd Austin
Advanced Computer Architecture LabAdvanced Computer Architecture Lab

University of MichiganUniversity of Michigan

Motivation

SoCs are becoming the most often used design

SoC – Verification Challenge

Multiple sub-blocks designed by different people

All rely on adherence to communication protocols

Need scalable and flexible framework to verify
communication between components

sy
st

em
 b

usCPU USB controller

Memory
controller

Graphics
controller

Example Design
A bus arbitrator

Challenge: Verify corner cases of input interaction
High-priority input during a low priority transaction
Two simultaneous high-priority inputs

CPU input

GPU input

System bus

Memory

USB input

Arbitrator

Traditional Verification Methodology

Limitations
Open-loop test generators suffer from low design coverage
Hard to specify tests for complex corner cases with
concurrent transactions

Contributions
Enable verification of SoC designs

Fits in traditional verification methodology
Feed-back based verification system
Template language

Specify complex corner cases with concurrent transactions
on parallel interfaces
Hierarchical modeling environment

Goal-sensitive feedback metrics
Depth analysis of circuit structure

Our Verification Methodology

Markov Model
Markov Model:

Directed Graph
Edge labels are
probabilities of transition

Vertices:
Low-level interface
commands
High-level scenario
steps

p0=0.05

p1=0.6 p2=0.35

pi

send_one

burst idle

Hierarchical Markov Model

High-level Markov Model

Low level Markov Models

send_one burst

send

CPU_port GPU_port Design

request sendrequest send

IQTest: Template Files

Template Files
Flexible and simple language for specifying the
interface

Use simple constructs to represent a sequence of
inputs or a sequence of scenario steps

Variables pass information deterministically or
probabilistically

Example Template

shared_var used for
communication between
local models
cmd used for signaling
to local models
Only one description of
local model needed

/ Global Variables /
global { shared_var; }

/ Global Markov Model /
TopModel (global) {

cmd [1:0] = { in0, in1 };
vertex (send_one) { … }
vertex(burst) { … } }

/ Local Markov model /
local1 {

using global::shared_var;
vertex (send) { … }
vertex (request) { … } }

/ Binding /
dut.CPU_port : local1(in0);
dut.GPU_port : local1(in1);

IQTest: Activity Analysis

Activity Signals and Analyzer
Used to steer the test generation towards corner-
case scenarios

Edges in Markov model reinforced from feedback values

Internal nodes in the design representing critical
activities

Port collision signal in network switch
Interrupt / branch mispredict in a microprocessor

Activity Signals and Analyzer
Previous research used a handful of key activity
signals

The feedback was too coarse
Prevented exploration of different scenarios

All signals were user-selected
No information was drawn from design itself

Depth-Driven Activity Monitoring

User-specified signals are used to extract more
feedback signals

Depth 0

Depth-Driven Activity Monitoring

User-specified signals are used to extract more
feedback signals

Depth 1 Depth 0

Depth-Driven Activity Monitoring

User-specified signals are used to extract more
feedback signals

Depth 2 Depth 0Depth 1

Depth-Driven Activity Monitoring

User-specified signals are used to extract more
feedback signals

Backward traversal of RTL logic
Assign “depth” values to logic driving signals
Assign weight proportional to the depth

Depth 2 Depth 1 Depth 0

Depth-Driven Activity Monitoring

Property output is used only for correctness check

IQTest

Related Work
Bayesian Networks:

S. Fine and A. Ziv. “Coverage directed test generation for functional
verification using Bayesian networks” DAC 2003
Markov Models:

S. Tasiran, F. Fallah, D. G. Chinnery, S. J. Weber, and K. Keutzer. “A
functional validation technique: Biased-random simulation guided by
observability-based coverage”. ICCD 2001

Weighted BDDs:

K. Shimizu and D. Dill. “Deriving a simulation input generator and a
coverage metric from a formal specification.” DAC 2002

Our previous work:

I. Wagner, V. Bertacoo, T. Austin. “Stresstest: An automatic approach to
test generation via activity monitors.” DAC 2005

- No hierarchical specification, no depth-driven feedback

Experimental Setup
Compared IQTest to StressTest and Random
Implemented IQTest feedback of depths 1,2,3
Run 25 times each design with different random seeds
Maximum search effort for each bug is at most 75000 cycles

IQTest

Random
Seeds

Simulation

DUT

No

Buggy
Cores

Golden
Model

Bug Found?

Record
Effort

Yes

Choose a
different seed

Designs Under Test
DLX Core

MIPS-lite ISA 5 stage pipeline
30 buggy cores (easy-moderately hard)

Alpha Core
Alpha 5 stage pipeline
10 buggy cores (hard)

Switch
5x5 crossbar logic /w input buffers
3 virtual channels per input
Adaptive cut-through routing version
10 bugs (easy-hard)

Results: DLX pipeline

Depth-2 performs best for harder bugs
Similar in Alpha

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
bugs

D

LX
 in

st
ru

ct
io

ns

Random
Depth-0 (StressTest)
Depth-1
Depth-2
Depth-3

Results: Alpha pipeline

Depth-2 performs best for harder bugs

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8
bugs

D

E
C

 A
lp

ha
 in

st
ru

ct
io

ns

Random
Depth-0 (StressTest)
Depth-1
Depth-2
Depth-3

Results: Switch Design

StressTest cannot be used on this design!
Found 3 actual bugs in the design

Hard corner cases that slipped through Random testing

0

10000

20000
30000

40000
50000

1 2 3 4 5 6 7
bugs

tr

an
si

tio
ns Random

Depth-0
Depth-1

IQTest finds more bugs faster
Key contributions

Hierarchical modeling environment
Allows for verification of multiple simultaneous interfaces
High-level models to specify scenarios
Low-level models to specify interfaces and stimuli

Depth-driven quality evaluation
User points to key signals in the design
Logic influencing the key signals is used for feedback
Increased quality of feedback with depth

Current work

Adding numeric coverage metric to IQTest

Enhancing feedback mechanism

Generating more complex scenarios

