FSM-Based Transaction-Level
Functional Coverage

e P

\ [|

Man-Yun Su, Che-Hua Shih, Juinn-Dar Huang, and Jing-Yang Jou

Department of Electronics Engineering,
National Chiao Tung University,
Hsinchu, Talwan

Qutline

N

Page 2

Introduction

Our Approach
Experimental Results
Conclusions

Issues in SoC Design Verification

N

« Platform-based design methodology with reusable IPs
IS adopted to accelerate design and verification process
— platform is based on a specific interface protocol

 Interface compliance verification

— to guarantee that the interface of each IP conforms to a
specific interface protocol

IP Core 1

Interface Wrapper

3
Platform T ;

Interface Wrapper Interface Wrapper

IP Core 2 IP Core 3

Page 3

Simulation-Based Functional Verification

L/

N

- Simulation is the most commonly used method for
functional verification

- Coverage metrics: perform a quantitative analysis of
simulation completeness
— measure how well a design has been verified objectively
— monitor the quality of verification patterns

— guide direct/random patterns to target the unverified design
corners

— provide a more systematic way to manage the simulation-based
verification process

Exploring suitable metrics is an important issue !

Page 4

Categories of Coverage Metrics

N

- Code coverage (or Structural coverage)
— 1dentify which part of the HDL code has been executed
statement coverage, branch coverage, condition coverage, ...

— not sufficient to represent the whole functionality of a design
specification
— not enough for modern complex SoC designs

« Functional coverage
— focus on the design functionality

— measure how much of the original design specification has been
exercised

— to further improve verification quality

Page 5

Functional Coverage for an Interface Design

L/

N

« Transaction-level functional coverage is one of the
commonly used methods

Transactions Interesting
Defined in an J J Transactions for
Interface Protocol / a Specific Design

Specification | Add Design Information

\ﬂg., burst modes, responses) Derived Manually

— a transaction is the transfer of data and control over an
Interface to perform certain basic operation

e.g., 4-beat burst, 8-beat burst, ...

— Interesting transactions for a specific interface design must
be derived manually

Page 6

Motivation

N

- It is tedious and error-prone for human to specify a transaction if
the detailed signal values are required

— e.d., a 4-beat burst of AMBA AHB

T5 T6 7

HCLK I | | | | |

HTRANS[1:0] Xxnonsm)C(sEQ)Cx SEQ XX sEQ
HADDR[31:0] XX 0x38 XX bac)(x 030 XX o4

HBURST[2:0])(X WRAPH

HWRITE
HSIZE[2:0]
HPROT][3:0]

Cantrcd for burst
SIFE = Worll

XX Jom X Yol Yol Xod

w_ vV v

X i D ! D £ D

=» Provide a simple, human-friendly, rigorous, and systematic way to
specify transactions at a higher level of abstraction instead of at

XX
HWDATA[31:0])(X
Y

HREADY

SHFRERREESER

HRDATA[31:0] XX

Page 7 the signal level

Introduction to Our Approach

N

- Interface protocol is specified as a spec. FSM

- A transaction can be defined as a specific sequence of
state transitions within the spec. FSM
— raise the level of abstraction to the higher FSM level

— encapsulate the details of low-level signals
e.g., 4-beat burst
at T1: HTRAN, HBURST, HREADY, HRESP, ... =7 SO
at T2: HTRAN, HBURST, HREADY, HRESP, ... =? S1

— put more emphasis on the functionality

Page 8

N

Qutline

Page 9

Introduction

Our Approach
— Methodology
— The Transaction Description Language SOL

Experimental Results
Conclusions

Our Approach

N

- Develop a transaction description language

State-Oriented Language (SOL)

— PSL-like syntax is used to represent sequences of
state transitions

— state is used as the atomic element
— the expressive power is high for complex transactions

- Proposed verification flow

— SOL 1s used to define transactions on spec. FSM
manually

— coverage analyzer is generated automatically
— transaction-level functional coverage

Page 10

N

SOL

G)
g

User-Defined
Transaction-Based
Scenarios using

SOL

Page 11

1

Translator

E U

[Checker

(Monitor)

{ DUV J—>
:> Coverage

Analyzer

Simulator

Direct/Random
Patterns

Flow of Our Verification Methodology

Coverage
Report

N

Qutline

Page 12

Introduction

Our Approach
— Methodology
— The Transaction Description Language SOL

Experimental Results
Conclusions

Principles

N

e States are used as basic elements to describe sequences

o Named sequence (=)

— the left-hand side of the = operator is a synonym for the
sequence on the right-hand side

e Sequence names are enclosed in braces { } when
referred

e Sequence set Is enclosed in angle brackets < = and
sequences are separated by commas ,

Page 13

Expression (1/8)

N

- Concatenation (;)

FSM T1:S1>S3> 54> 351
State: $1,52,S3,54 71 ={S1;S3;S54;81};

@“3@

Page 14

N

Expression (2/8)

 Extra signal qualification (")

FSM
State: S1,52,53,54

Page 15

S >S3 >S4 > S1
72={S1"v==1";S3;S4;S1};

N

Expression (3/8)

Page 16

The repetition operators (| |) are used to
describe repeated concatenation of the same
sequence

Three types of repetitions

— consecutive repetition ([*])

— non-consecutive repetition ([= |)
— goto repetition ([|)

Expression (4/8)

N

FSM
State: S1,52,53,54

@’3@

Page 17

« Consecutive repetition ([*])

T3:S1>S5S2->S2->S2-> 351
713 ={S1;S2;S2,;S2;S1},
={S1; S2[*3];S1};

T4 : S1 > S2 (1~5 cycles) > S1
T4 ={S1;S2[*1:5];S1Y};

T5 : S1 - S2 (ANY # of cycles)
75={S1;S2][*]};

ﬁmng O time]

Expression (5/8)

N

e Sequence AND (&&)

FSM
State: S1,52,53,54 T8 : S1 -2 (! S3) -2 S2
- (! S3) -2 S2

’@ > (1 S3) > S2
@ @ 718 = { S1; {S3[=0]}&&{S2[=>3]} };
(s

Page 18

Expression (6/8)

N

e Sequence OR (|)

FSM
State: 51,52,53,54 T9 : S1-2S3>S54->8S1 11

OR
’@‘ S12>S2->S2->S52->S1 I3

@ 79 = { {S1;S3;54;S1}|{S1;S2[*3];S1} };

= {{T1} [{T3} X,

Page 19

Expression (7/8)

N

- Sequence fusion (:)
— two sequences overlap each other by one cycle

— the 2" sequence starts at the cycle in which the
1st sequence completes

FSM T10 : S1>S3>S4>S1>
State: S1,52,53,54 82982982981
’@ 2 S1->S3>S4->S1
@ @ 5155255252581

@ 710 ={ {S1:53:54:51} - {S1:52[*3];S1} };
={{T1} : {T3} }

Page 20

Expression (8/8)

N

» Sequence set cross (**)

FSM
State: S1,52,S3,54
@ >4 T3
S T4
EEAECORE
@ {{T13:{T3}} {{T1}:{T4}}; {{T1}:AT3}};
{r2}3:{T3}y; {T123:{T14}}; {{T2}:{T5}};

<{T1}{T2}> ** <{T3} {174} {T5}> ;

Page 21

Qutline

N

- Introduction
- Our Approach

« Experimental Results
- Conclusions

Page 22

N

e

Page 23

-

N

Biasing
Info.

Experimental Environment

Static
Biasing

Pattern DUV
Generator -
%4 Interface wrapper

/
Checker Coverage \
: Coverage
[(Monitor) J [Analyzer J :> Report
Spec. User-Defined
FSM :> Uletisfier <i Transactions
-

Experimental Result |
Coverage Comparison — Case 1

N

L/

Page 24

Only consider 10 basic read and write transactions
— e.g., {OneBeatRead}; {OneBeatWrite}; {FourBeatRead}; ...

Design Coverage # of cycles to | Transaction
reach 100% | coverage (%)
State 12 10-(1/10)
Convolution | Transition 47 20 (2/10)
M-path 102 30 (3/10)
Transaction 787 100 (10/10)

Experimental Result |
Coverage Comparison — Case 2

L/

N

- Add 15 more basic transactions with BUSY or WAIT

and 25 back-to-back consecutive transactions
— e.g., {FourBeatWithWAIT}; {FourBeatWithBUSY}; ...
<{Incr},{OneBeat},{FourBeat},{EightBeat},{SixteenBeat}> **
<{Incr},{OneBeat},{FourBeat},{EightBeat},{SixteenBeat}>;

Design Coverage # of cycles to| Transaction
reach 100% | coverage (%)
State 12 4 (2/50)
Convolution | Transition 47 8 (4/50)
M-path 102 12 (6/50)
Transaction 11135 100 (50/50)

Page 25

Experimental Result |
Coverage Comparison — Conclusions

L/

N

- The classical coverage metrics are not capable of
providing enough verification quality
- Transaction-level functional coverage

— put more emphasis on the functionality
— Improve the verification quality

Page 26

Experimental Result ||
Efficiency Improvement

L/

N

- Increase weights of transitions that may generate
BUSY conditions (bias,)

- Adjust weights of 1-beat burst, 4-beat burst, 8-
beat burst, and 16-beat burst in a decreasing
order (bias,)

Design Bias /0T €ycles 10 Factor
reach 100%
equal weight 11135 1
convolunon| || 1ias, 1864 | 0.167
bias, + bias, 981 0.088

Page 27

Experimental Result ||
Efficiency Improvement — Conclusions

N

L/

- By exploring coverage reports

— bias the pattern generator to create more effective
patterns to target the unverified corner cases

— get the same coverage in a shorter time
extremely useful for the regression verification

Page 28

N

Qutline

- Introduction
- Our Approach
- Experimental Results

« Conclusions

Page 29

N

Conclusions

Page 30

A transaction-level functional coverage methodology is
proposed for interface compliance verification

The transaction description language SOL is developed
— precise and rigorous

— strong expressive power

— capable of modeling complex transactions

A translator is provided to automatically convert the
SOL-based transactions into the coverage analyzer

Experimental results confirm that our methodology can
— Improve the verification quality
— Increase the verification efficiency

Page 31

Previous Approaches of
Transaction-Level Functional Coverage (1/2)

N

L/

- M-path coverage

Page 32

— model a protocol as a spec. FSM

— define the M-path as a path which can form a
complete bus transfer in the FSM model

l.e., a finite sequence of state transitions (a simple
transaction)

— use M-paths as the targets for coverage measurement

Issues
— lack expressive power
— do not consider consecutive transfers

Previous Approaches of
Transaction-Level Functional Coverage (2/2)

L/

N

« CWL-based approach

— Component Wrapper Language: a regular-expression-based
syntax Is used to describe signal sequences

— user can construct transaction scenarios and do transaction-level
verification

« |ssues

— Individual signals must be considered when describing thorough
transactions — signal-level description

— syntactically hard to model complex transactions

Page 33

