FSM-Based Transaction-Level Functional Coverage

Man-Yun Su, Che-Hua Shih, Juinn-Dar Huang, and Jing-Yang Jou

Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan

Issues in SoC Design Verification

- Platform-based design methodology with reusable IPs is adopted to accelerate design and verification process
 - platform is based on a specific interface protocol
- Interface compliance verification

to guarantee that the interface of each IP conforms to a specific interface protocol

Simulation-Based Functional Verification

- Simulation is the most commonly used method for functional verification
- Coverage metrics: perform a quantitative analysis of simulation completeness
 - measure how well a design has been verified objectively
 - monitor the quality of verification patterns

Page 4

- guide direct/random patterns to target the unverified design corners
- provide a more systematic way to manage the simulation-based verification process

Exploring suitable metrics is an important issue !

Categories of Coverage Metrics

- Code coverage (or Structural coverage)
 - identify which part of the HDL code has been executed
 - statement coverage, branch coverage, condition coverage, ...
 - not sufficient to represent the whole functionality of a design specification
 - not enough for modern complex SoC designs
 - Functional coverage
 - focus on the design functionality
 - measure how much of the original design specification has been exercised
 - to further improve verification quality

Functional Coverage for an Interface Design

Transaction-level functional coverage is one of the commonly used methods

- a transaction is the transfer of data and control over an interface to perform certain basic operation
 - e.g., 4-beat burst, 8-beat burst, ...
- interesting transactions for a specific interface design must be derived manually

Provide a simple, human-friendly, rigorous, and systematic way to specify transactions at a higher level of abstraction instead of at
 Page 7 the signal level

Introduction to Our Approach

- Interface protocol is specified as a spec. FSM

- put more emphasis on the functionality

Our Approach

- Develop a transaction description language
 - State-Oriented Language (SOL)
 - PSL-like syntax is used to represent sequences of state transitions
 - state is used as the atomic element
 - the expressive power is high for complex transactions
- Proposed verification flow

 SOL is used to define transactions on spec. FSM manually
 coverage analyzer is generated automatically
 - transaction-level functional coverage

Page 10

Principles

- States are used as basic elements to describe sequences
- Named sequence (=)
 - the left-hand side of the = operator is a synonym for the sequence on the right-hand side
 - Sequence names are enclosed in braces { } when referred
- Sequence set is enclosed in angle brackets < > and sequences are separated by commas ,

Expression (3/8)

- The repetition operators ([]) are used to describe repeated concatenation of the same sequence
 - Three types of repetitions
 - consecutive repetition ([*])
 - non-consecutive repetition ([=])
 - goto repetition ($[\rightarrow]$)

Expression (4/8)

Consecutive repetition ([*])

Sequence OR ()

Expression (7/8)

FSM

State: S1,S2,S3,S4

S1

S4

- Sequence fusion (:)
 - two sequences overlap each other by one cycle
 the 2nd sequence starts at the cycle in which the
 - 1st sequence completes

S3

T10 : $S1 \rightarrow S3 \rightarrow S4 \rightarrow S1 \rightarrow$ $S2 \rightarrow S2 \rightarrow S2 \rightarrow S1$

→ S1→S3→S4→S1 S1→S2→S2→S2→S1

T10 ={ {S1;S3;S4;S1} : {S1;S2[*3];S1} }; ={ {T1} : {T3} };

Page 20

S2

Experimental Environment

Experimental Result I Coverage Comparison – Case 1

Only consider 10 basic read and write transactions
– e.g., {OneBeatRead}; {OneBeatWrite}; {FourBeatRead}; ...

	Design	Coverage	# of cycles to reach 100%	Transaction coverage (%)
ามการเรื่องการแรกเลขายายาย และการการการเหตุดารการการกรุงการการการการการการการการการการการการการก		State		10 (1/10)
	Convolution	Transition	47	20 (2/10)
		M-path	102	30 (3/10)
		Transaction	787	100 (10/10)
Dago 24				

Experimental Result I Coverage Comparison – Case 2

- Add 15 more basic transactions with BUSY or WAIT
- and 25 back-to-back consecutive transactions
 - e.g., {FourBeatWithWAIT}; {FourBeatWithBUSY}; ...
 - <{Incr},{OneBeat},{FourBeat},{EightBeat},{SixteenBeat}> **
 - <{Incr},{OneBeat},{FourBeat},{EightBeat},{SixteenBeat}>;

Image: Solution State 12 4 (2/50) Convolution Transition 47 8 (4/50) M-path 102 12 (6/50) Transaction 11135 100 (50/50)	Design	Coverage	# of cycles to	Transaction
State 12 4 (2/50) Convolution Transition 47 8 (4/50) M-path 102 12 (6/50) Transaction 11135 100 (50/50)	5		reach 100%	coverage (%)
Convolution Transition 47 8 (4/50) M-path 102 12 (6/50) Transaction 11135 100 (50/50)		State	12	4 (2/50)
M-path 102 12 (6/50) Transaction 11135 100 (50/50)	Convolution	Transition	47	8 (4/50)
Transaction 11135 100 (50/50)		M-path	102	12 (6/50)
		Transaction	11135	100 (50/50)

838	22.000			0.010	<u></u>
1223	\mathbf{D}_{i}	20	0	ി	
10.00	P (10			S1
838				1.000	$\mathbf{\nabla}$
-C-2C					

Experimental Result I

- Coverage Comparison Conclusions
 - The classical coverage metrics are not capable of providing enough verification quality
 - Transaction-level functional coverage
 - put more emphasis on the functionality
 - improve the verification quality

Experimental Result II Efficiency Improvement

- Increase weights of transitions that may generate BUSY conditions (bias₁)
- Adjust weights of 1-beat burst, 4-beat burst, 8beat burst, and 16-beat burst in a decreasing order (bias₂)

	Design	Bias	# of cycles to reach 100%	Factor
	Convolution	equal weight	11135	1
		bias ₁	1864	0.167
		bias ₁ + bias ₂	981	0.088
Page 27				

Experimental Result II

Efficiency Improvement – Conclusions

- By exploring coverage reports
 - bias the pattern generator to create more effective patterns to target the unverified corner cases
 - get the same coverage in a shorter time
 - extremely useful for the regression verification
 - the compact and effective patterns are crucial to minimize the required simulation time

Conclusions

- A transaction-level functional coverage methodology is proposed for interface compliance verification
 - The transaction description language SOL is developed
 - precise and rigorous
 - strong expressive power
 - capable of modeling complex transactions
 - A translator is provided to automatically convert the SOL-based transactions into the coverage analyzer
 - Experimental results confirm that our methodology can
 - improve the verification quality
 - increase the verification efficiency

Page 30

Previous Approaches of

- Transaction-Level Functional Coverage (1/2)
 - M-path coverage

Page 32

- model a protocol as a spec. FSM
- define the M-path as a path which can form a complete bus transfer in the FSM model
 - i.e., a finite sequence of state transitions (a simple transaction)
- use M-paths as the targets for coverage measurement
- Issues
 lack expressive power
 do not consider consecutive transfers

Previous Approaches of

Transaction-Level Functional Coverage (2/2)

CWL-based approach

- Component Wrapper Language: a regular-expression-based syntax is used to describe signal sequences
 - user can construct transaction scenarios and do transaction-level verification

Issues

- individual signals must be considered when describing thorough transactions – signal-level description
 - syntactically hard to model complex transactions

