
FSMFSM --Based TransactionBased Transaction--Level Level
Functional CoverageFunctional Coverage

Man-Yun Su, Che-Hua Shih, Juinn-Dar Huang, and Jing-Yang Jou

Department of Electronics Engineering,
National Chiao Tung University,

Hsinchu, Taiwan

Page 2

OutlineOutline

• Introduction
• Our Approach
• Experimental Results
• Conclusions

Page 3

Issues in SoC Design VerificationIssues in SoC Design Verification

• Platform-based design methodology with reusable IPs
is adopted to accelerate design and verification process
– platform is based on a specific interface protocol

• Interface compliance verification
– to guarantee that the interface of each IP conforms to a

specific interface protocol

Platform
Interface Wrapper

IP Core 1

Interface Wrapper

IP Core 2 IP Core 3

Interface Wrapper

Page 4

SimulationSimulation--Based Functional VerificationBased Functional Verification

• Simulation is the most commonly used method for
functional verification

• Coverage metrics: perform a quantitative analysis of
simulation completeness
– measure how well a design has been verified objectively
– monitor the quality of verification patterns
– guide direct/random patterns to target the unverified design

corners
– provide a more systematic way to manage the simulation-based

verification process

Exploring suitable metrics is an important issue !

Page 5

Categories of Coverage MetricsCategories of Coverage Metrics

• Code coverage (or Structural coverage)
– identify which part of the HDL code has been executed

• statement coverage, branch coverage, condition coverage, ...
– not sufficient to represent the whole functionality of a design

specification
– not enough for modern complex SoC designs

• Functional coverage
– focus on the design functionality
– measure how much of the original design specification has been

exercised
– to further improve verification quality

Page 6

Functional Coverage for an Interface DesignFunctional Coverage for an Interface Design

• Transaction-level functional coverage is one of the
commonly used methods

– a transaction is the transfer of data and control over an
interface to perform certain basic operation
• e.g., 4-beat burst, 8-beat burst, ...

– interesting transactions for a specific interface design must
be derived manually

Transactions
Defined in an

Interface Protocol
Specification

Transactions
Defined in an

Interface Protocol
Specification

Interesting
Transactions for
a Specific Design

Interesting
Transactions for
a Specific Design

Add Design Information
Derived Manually (e.g., burst modes, responses)

Page 7

MotivationMotivation
• It is tedious and error-prone for human to specify a transaction if

the detailed signal values are required
– e.g., a 4-beat burst of AMBA AHB

Provide a simple, human-friendly, rigorous, and systematic way to
specify transactions at a higher level of abstraction instead of at
the signal level

Page 8

Introduction to Our ApproachIntroduction to Our Approach

• Interface protocol is specified as a spec. FSM

• A transaction can be defined as a specific sequence of
state transitions within the spec. FSM
– raise the level of abstraction to the higher FSM level
– encapsulate the details of low-level signals

• e.g., 4-beat burst
at T1: HTRAN, HBURST, HREADY, HRESP, … =?
at T2: HTRAN, HBURST, HREADY, HRESP, … =?

……

– put more emphasis on the functionality

S0

S1

Page 9

OutlineOutline

• Introduction
• Our Approach

– Methodology
– The Transaction Description Language SOL

• Experimental Results
• Conclusions

Page 10

Our ApproachOur Approach

• Develop a transaction description language
State-Oriented Language (SOL)
– PSL-like syntax is used to represent sequences of

state transitions
– state is used as the atomic element
– the expressive power is high for complex transactions

• Proposed verification flow
– SOL is used to define transactions on spec. FSM

manually
– coverage analyzer is generated automatically
– transaction-level functional coverage

Page 11

Flow of Our Verification MethodologyFlow of Our Verification Methodology

Coverage
Report

Spec.
FSM

Spec.
FSM

Guidance

Simulator
DUV

Direct/Random
Patterns

Checker
(Monitor)

SOLSOL

Coverage
AnalyzerTranslator

User-Defined
Transaction-Based
Scenarios using

SOL

Page 12

OutlineOutline

• Introduction
• Our Approach

– Methodology
– The Transaction Description Language SOL

• Experimental Results
• Conclusions

Page 13

PrinciplesPrinciples

• States are used as basic elements to describe sequences
• Named sequence (=)

– the left-hand side of the = operator is a synonym for the
sequence on the right-hand side

• Sequence names are enclosed in braces { } when
referred

• Sequence set is enclosed in angle brackets < > and
sequences are separated by commas ,

Page 14

Expression (1/8)Expression (1/8)

• Concatenation (;)

T1 : S1 S3 S4 S1
T1 = { S1 ; S3 ; S4 ; S1 };
T1 : S1 S3 S4 S1
T1 = { S1 ; S3 ; S4 ; S1 };

S1

S2 S3

S4

FSM
State: S1,S2,S3,S4

Page 15

Expression (2/8)Expression (2/8)

• Extra signal qualification (“ ”)

S1

S2 S3

S4

FSM
State: S1,S2,S3,S4

S1 “V == 1”S1 “V == 1”

V == 1

V == 1
T2 : S1 S3 S4 S1
T2 = { S1 “V == 1” ; S3 ; S4 ; S1 };

V == 1
T2 : S1 S3 S4 S1
T2 = { S1 “V == 1” ; S3 ; S4 ; S1 };

Page 16

Expression (3/8)Expression (3/8)

• The repetition operators ([]) are used to
describe repeated concatenation of the same
sequence

• Three types of repetitions
– consecutive repetition ([*])
– non-consecutive repetition ([=])
– goto repetition ([])

Page 17

Expression (4/8)Expression (4/8)

• Consecutive repetition ([*])

T5 : S1 S2 (ANY # of cycles)
T5 = { S1 ; S2 [*] };
T5 : S1 S2 (ANY # of cycles)
T5 = { S1 ; S2 [*] };

S1

S2 S3

S4

FSM
State: S1,S2,S3,S4

including 0 time

T3 : S1 S2 S2 S2 S1
T3 = { S1 ; S2 ; S2 ; S2 ; S1};

= { S1 ; S2[*3] ; S1 };

T3 : S1 S2 S2 S2 S1
T3 = { S1 ; S2 ; S2 ; S2 ; S1};

= { S1 ; S2[*3] ; S1 };

T4 : S1 S2 (1~5 cycles) S1
T4 = { S1 ; S2 [*1:5] ; S1 };
T4 : S1 S2 (1~5 cycles) S1
T4 = { S1 ; S2 [*1:5] ; S1 };

Page 18

Expression (5/8)Expression (5/8)

• Sequence AND (&&)

T8 : S1 ．．．(! S3) S2
．．．(! S3) S2
．．．(! S3) S2

T8 = { S1 ; {S3[=0]}&&{S2[3]} };

T8 : S1 ．．．(! S3) S2
．．．(! S3) S2
．．．(! S3) S2

T8 = { S1 ; {S3[=0]}&&{S2[3]} };

S1

S2 S3

S4

FSM
State: S1,S2,S3,S4

Page 19

Expression (6/8)Expression (6/8)

• Sequence OR (|)

T9 : S1 S3 S4 S1 ．．．T1
OR
S1 S2 S2 S2 S1 ．．．T3

T9 = { {S1;S3;S4;S1}|{S1;S2[*3];S1} };
= { {T1} | {T3} };

T9 : S1 S3 S4 S1 ．．．T1
OR
S1 S2 S2 S2 S1 ．．．T3

T9 = { {S1;S3;S4;S1}|{S1;S2[*3];S1} };
= { {T1} | {T3} };

S1

S2 S3

S4

FSM
State: S1,S2,S3,S4

Page 20

Expression (7/8)Expression (7/8)

• Sequence fusion (:)
– two sequences overlap each other by one cycle
– the 2nd sequence starts at the cycle in which the

1st sequence completes

T10 : S1 S3 S4 S1
S2 S2 S2 S1

S1 S3 S4 S1
S1 S2 S2 S2 S1

T10 ={ {S1;S3;S4;S1} : {S1;S2[*3];S1} };
={ {T1} : {T3} };

T10 : S1 S3 S4 S1
S2 S2 S2 S1

S1 S3 S4 S1
S1 S2 S2 S2 S1

T10 ={ {S1;S3;S4;S1} : {S1;S2[*3];S1} };
={ {T1} : {T3} };

S1

S2 S3

S4

FSM
State: S1,S2,S3,S4

Page 21

Expression (8/8)Expression (8/8)

• Sequence set cross (**)

T1 T3
T4

T2 T5

{{T1}:{T3}}; {{T1}:{T4}}; {{T1}:{T5}};
{{T2}:{T3}}; {{T2}:{T4}}; {{T2}:{T5}};

<{T1},{T2}> ** <{T3},{T4},{T5}> ;

T1 T3
T4

T2 T5

{{T1}:{T3}}; {{T1}:{T4}}; {{T1}:{T5}};
{{T2}:{T3}}; {{T2}:{T4}}; {{T2}:{T5}};

<{T1},{T2}> ** <{T3},{T4},{T5}> ;

S1

S2 S3

S4

FSM
State: S1,S2,S3,S4

Page 22

OutlineOutline

• Introduction
• Our Approach
• Experimental Results
• Conclusions

Page 23

Experimental EnvironmentExperimental Environment

User-Defined
Transactions

Spec.
FSM Translator

Coverage
Report

Coverage
Analyzer

Checker
(Monitor)

Biasing
Info.

Pattern
Generator

Static
Biasing

Interface wrapper

IP

DUV

Page 24

Experimental Result IExperimental Result I
Coverage Comparison Coverage Comparison –– Case 1Case 1

• Only consider 10 basic read and write transactions
– e.g., {OneBeatRead}; {OneBeatWrite}; {FourBeatRead}; …

Design Transaction
coverage (%)

of cycles to
reach 100%Coverage

Convolution
10 (1/10)12State

100 (10/10)787Transaction
30 (3/10)102M-path
20 (2/10)47Transition

Page 25

Experimental Result I Experimental Result I
Coverage Comparison Coverage Comparison –– Case 2Case 2

• Add 15 more basic transactions with BUSY or WAIT
and 25 back-to-back consecutive transactions
– e.g., {FourBeatWithWAIT}; {FourBeatWithBUSY}; …

<{Incr},{OneBeat},{FourBeat},{EightBeat},{SixteenBeat}> **
<{Incr},{OneBeat},{FourBeat},{EightBeat},{SixteenBeat}>;

Convolution

Design

4 (2/50)12State

100 (50/50)11135Transaction

12 (6/50)102M-path

8 (4/50)47Transition

Transaction
coverage (%)

of cycles to
reach 100%

Coverage

Page 26

Experimental Result I Experimental Result I
Coverage Comparison Coverage Comparison –– Conclusions Conclusions

• The classical coverage metrics are not capable of
providing enough verification quality

• Transaction-level functional coverage
– put more emphasis on the functionality
– improve the verification quality

Page 27

Experimental Result IIExperimental Result II
Efficiency ImprovementEfficiency Improvement

• Increase weights of transitions that may generate
BUSY conditions (bias1)

• Adjust weights of 1-beat burst, 4-beat burst, 8-
beat burst, and 16-beat burst in a decreasing
order (bias2)

0.1671864bias1
Convolution

Design

111135equal weight

Factor
of cycles to
reach 100%

Bias

0.088981bias1 + bias2

Page 28

Experimental Result IIExperimental Result II
Efficiency Improvement Efficiency Improvement –– Conclusions Conclusions

• By exploring coverage reports
– bias the pattern generator to create more effective

patterns to target the unverified corner cases
– get the same coverage in a shorter time

• extremely useful for the regression verification
– the compact and effective patterns are crucial to minimize

the required simulation time

Page 29

OutlineOutline

• Introduction
• Our Approach
• Experimental Results
• Conclusions

Page 30

ConclusionsConclusions

• A transaction-level functional coverage methodology is
proposed for interface compliance verification

• The transaction description language SOL is developed
– precise and rigorous
– strong expressive power
– capable of modeling complex transactions

• A translator is provided to automatically convert the
SOL-based transactions into the coverage analyzer

• Experimental results confirm that our methodology can
– improve the verification quality
– increase the verification efficiency

Page 31

Page 32

Previous Approaches of Previous Approaches of
TransactionTransaction--Level Functional Coverage (1/2)Level Functional Coverage (1/2)

• M-path coverage
– model a protocol as a spec. FSM
– define the M-path as a path which can form a

complete bus transfer in the FSM model
• i.e., a finite sequence of state transitions (a simple

transaction)

– use M-paths as the targets for coverage measurement

• Issues
– lack expressive power
– do not consider consecutive transfers

Page 33

Previous Approaches of Previous Approaches of
TransactionTransaction--Level Functional Coverage (2/2)Level Functional Coverage (2/2)

• CWL-based approach
– Component Wrapper Language: a regular-expression-based

syntax is used to describe signal sequences
– user can construct transaction scenarios and do transaction-level

verification

• Issues
– individual signals must be considered when describing thorough

transactions – signal-level description
– syntactically hard to model complex transactions

