Power-Aware Scheduling and
Voltage Setting for Tasks Running
ona Hard Real-Time System

Peng Rong and Massoud Pedram

Department of Electrical Engineering
University of Southern California

Outline

ntroduction

Problem Formulation
Power Aware Scheduling
Voltage Assignment
Refinement
Experimental Result

I|ntroduction

s Dynamic Voltage Scaling (DVS)

— Slow down underutilized resources and decrease their
operating voltages

— Effective for reducing power consumption of the CPU

m Dynamic Power Management (DPM)
— Selective shut-off of idle system components

— Effective for reducing power consumption of the CPU,
peripheral components, and I/O devices

= Integrated DVS and DPM

— |dle intervals are created by the scheduler which decides when
and how fast to perform the tasks

— May be beneficial to speed up task processing in order to
create an idle period in which the system can sleep

Related Work

s Low Power Scheduling for DVS
— List-scheduling algorithm
m [ask priority: reciprocal of the slack time [Luo, 2002]

= High priority: high energy saving and low slack time [Gruian,
2001]

— Early-deadline-first scheduling to assign a task to the best-fit
processor [Zhang, 2002]

s DPM-based Task Scheduling

— Online algorithm to reduce the number of on/off transitions of devices
[Lu, 2000]

— Offline branch-and-bound algorithm [Swaminathan, 2002]

m Approaches for integrated DVS and DPM

— Stochastic Approach: CTMDP [Qinru, 1999], Renewal Theory with
DVS [Simunic, 2001]

— Competitive analysis based algorithm: 3-competitive for a processor
with one sleep state [Irani, 2003]

Problem, Description

m Targeted System

— A real-time system having a single CPU and K other devices,
e.g., /O and memory

m CPU (device 0) can operate at a number of m different
voltage levels and supports power-down modes

m Devices have only one active mode and support at least
one low power mode

— A set of n non-preemptive dependent tasks, periodically run on

the system with a hard deadline; Task dependency captured by
a DAG, G(V,E)

— Every task has to be performed on the CPU, but may require
support from only some of the devices

= Objective

— Determine the optimal task scheduling and task-level voltage

assignment that minimize the total system energy consumption
while meeting the hard real-time constraint

Problem Formulation

s Energy consumption for execution of task u

m K
ene, = Cu;X(u’i)) I\Iu,i '\/iz +kz_1lzk(u) | R('duru

C, : Switched capacitance per clock cycle
f. : Clock frequency of the CPU at voltage V;

P, : Power dissipation of device k in active mode

m Precedence constraints

S(u) +dur, <s(v) Ve(u,v)eE

x(u, i) : Percentage of the
workload of task u that is
performed at CPU voltage V,

N, : Actual number of CPU
cycles required to complete
task u at operating voltage V;

Z,(u) : 0-1 integer variable; 1
iff task u requires service
from device k

s(u) : Start time of task u

Y, (u, v) : O-1 integer variable;
itis setto 1iff task u is
executed immediately before
task v on device k

Problem Formulation (Cont'd)

s Energy consumption when device k is idle

A
& + Ps-1t, It=max(rge, 7,

p,-it, otherwise

Idlene, (it) ={

pa'it i Ey T pslt
Tge = &y /(P, — ps) :

rnaX.(TBE ? z-tr) >

m |dle time of device k just before task v Is executed

It,, = s(v) - Zn:(s(u) +dur,)-Y, (u,Vv)

Problem Formulation (Cont'd)

m [otal system energy consumption (ignering the

boundary intervals for each data instantiation
period)

B Zn:eneu + izn:idlenq((zk (v)-it.,)
u=1

k=0 v=1

m Precedence constraint between a task and Its
Immediate successor

n

D (s(u)+dur,)-Y, (u,v) <s(v) VveV, kedevs,

u=0

Solution Approach

= This problem formulation is a nonlinear nen-convex
Integer program over variables Y, (u,v), x(usr), and s(u)

m [hree-step heuristic approach

— Task Ordering: Derive a linear ordering of tasks (i.e.,
calculate Y,(u,v) values) by performing an interactive
minimum-cost matching on some appropriately
constructed graph

— Voltage Assignment: Given the task ordering implied by
the schedule obtained in step 1, assign voltages and task
durations (I.e., calculate x(u,l) values) and exact start
times (i.e., calculate s(u) values) to each task so as to
meet a target cycle time, T, for data initiation

Solution Refinement: Improve the task scheduling and
voltage assignment of steps 1 and 2 to increase the
energy efficiency of the resulting solutions

Task Ordering

m Goal Is to schedule the task graph with knewn task
execution times on the CPU so as to minimize the total
energy dissipation by maximizing the 1/O device sleep
times while accounting for the energy transition cost of
devices going from ON to OFF states and vice versa

— Notice that the summation of energy dissipations in all
devices when these devices are In active states is fixed
and independent of the task ordering. The ordering only
changes the duration of the idle times and the number of
ON to OFF transitions for the 1/O devices

System Energy for Known lask
Execution Schedule, A

= Lower-bound on the total system energy.

totene g = i Z funcpow, - dur, + ZK: sleepow, - (T, — Z dur,)
k=0

u=1 kedev, uetasks,

= Total energy computation based on segment set
representation of device activity, S,

Let tasks, denote
the set of tasks
running on device
k and dev, denote
the set of devices
that are required
by task u

tnonactive(SK,i) Start(%,nl) —end (S(I)

Fk,i I:k(SK,i J S(,i+1) - 1 Iff tnonactive(SK,i J Sk,i+1) 2 tBE,k

x |S-1
totene(A) =totene ; + > > (F, -transeng, + (1- F,)- funcpow, - t,o .cive(Sci))

k=1 i=1

Augmented Task Graph (AT1G)

s \WWe construct an augmented task graph A(V,C)
from the given task graph G(V,E) by copying G(V,E)
and adding/deleting some edges to/from E

— The new edge set C has the following properties:

m [t does NOT contain any directed edge uv If there
exists another directed path from u to v

= [t contains undirected edges qr if tasks associated
with g and r can be scheduled next to each other In
some order

m Each directed edge gr has an associated energy cost
that captures the energy consumption due to devices
staying in their ON state or device state transitions
that occur when the two end nodes of the edge are
executed in a seguence

— Each node g in V has three attributes: task
execution time dur, task energy consumption ene;
device list requwedqby the task dev,

Scheduling Algorithm

G)

> = Node Merge Operation

— Merge two nodes into a
single node and remove
the edge between these
two nodes

Generate properties for
the new node

Remove all edges that
become invalid after this
merge

An Example

Example: Consider a task graph depicted on the left. Assume
that there are four devices {0,1,2,3} with the following device
utilization sets. Each device consumes 1 unit of energy for
each transition to and from the sleep state
dev(tTEES Undirected edge
dev(u2) = dev(u4) ={0,1} added between u2 and

dev(u3) = dev(u5) = dev(u6) ={0,2,3} u3, because they can
be scheduled next to
each other in any

order

sleep; the extra
energy costis 1

Task Graph

An Example (Cont'd)

m Select a pair of nodes to merge
— There are five edges having the minimum extraene value: 0
— We focus on three of the edge merges here: u,u,, UsU., and U:U,
— Pick the edge that results in minimum total extra energy for the ATG

From left to right, the total extra energy costs are 5.5, 6 and 5
Select the u,u, edge

Voltage Assignment as an ILP

m Having generated the task schedule, we fix the ordering
of tasks, but ignore task execution times and start times

— Even with a fixed task ordering, the optimization problem
cannot be solved efficiently due to the non-convex nature
of device idle energy over time

= Our approach is to define a set of idle time ranges and
map the actual'idle time to one of these ranges

— Define new 0-1 integer variables W, (v,h) to approximate
idle time, it,, ; Note that W, (v,h) is 1 iff t, < It , <t .4 b,
and t, .., are chosen from a discrete set { tk 1 PT P

|dIenq<(|tv,k):ZWk(v,h).ldIenq((tk,h) with ZWk(v,h):l

— Precedence constraint between a task, u, and its
|mmed|ate successor v, becomes

ZtkhW (v,h) < s(v) - Z(s(u)+dur) Y, (U,v) < ZtKM

Solution Refinement

1.

Move tasks closer together so as to minimize
unnecessary positive slack times

ldentify a task whose duration has a large impact
on the system energy dissipation, e.g., a small
change of its execution time can enable device
transitions to low power states, and change Its
voltage assignment accordingly

Goto step 2 until no further improvement Is
possible

Experimental Setup

= The CPU operating voltage/frequency levels:
1V/200MHz, 1.1V/300MHz and 1.3V/400MHz

Power and transition parameters

Device

Active
Power

Sleep
Power

Energy
Overhead

Timing
Overhead

SDRAM

0.3W

~0

~0

~0

HDD

2.1\W

0.85W

0.6J

400ms

WLAN

0.7W

0.05W

0.04J

100ms

CPU

1.0W
(200MHz)

0.05W

0.3J

400ms

Characteristics of Task Graphs

CPU and device utilization factors at
max CPU speed
CPU: SDRAM: HDD; WLAN

0.61;0.61;0.29; 0.42
0.72;0.72;0.51 ; 0.39

0.34;0.34;0.12; 0.23

0.48; 0.48; 0.30; 0.25

0.55; 0.55;0.28 ; 0.36

Approaches Compared

M1: No DVS, no DPM

— The CPU always operates at the highest voltage level and devices are
kept active during the whole execution time.

M2: DPM without any task scheduling

— Tasks are executed on the CPU (which has assumed its highest frequency and
voltage setting) in an un-optimized order based on their ID numbers after they
become available. The state transition sequences of all devices and the CPU
are determined optimally.

M3: DPM with task scheduling

— This method is similar to M2, except that our proposed power-aware task
scheduling algorithm is used to determine the task execution sequence.

M4: Conventional cpu-driven DVS plus DPM

— Similar to M2, except that the task operating voltage is assigned to minimize
the CPU power consumption. More specifically, the operating voltage setting
for each task is obtained without considering the energy consumption of
devices.

M5: Proposed system-aware DVS plus DPM (PSVS)

— Task scheduling and operating voltage settings are determined through the
proposed three-phase framework.

Experiment Results

s Energy consumption comparisons of different
approaches (normalized as a ratio over M1 results)

Task Graph M2 M3 M4 M5

Gl
G2
G3
G4
G5

Conclusion

\We addressed the problem of minimizing energy
consumption of a computer system performing periodic
hard real-time tasks with precedence constraints

In our appreach, dynamic power management and
voltage scaling technigues were combined to reduce
the energy consumption of the CPU and devices

The optimization problem was first formulated as an
Integer non-convex programming problem. Next, a
three-phase solution framework, which integrates
power management scheduling and task voltage
assignment, was presented

Future work will focus on developing a more efficient
algorithm for the voltage assignment step

Backup Slides

Edge Energy Cost Calculation

Seq [start(r)—durq,start(r)]; Sk.suce(r) [start(r) +dur.,T,]

|:k,q,r Fk(%,q’%,succ(r))

ISd-2

extraeng, = > > (F

k,q,r 'transenex + (1_ |:k,q,r) ’ funCpOWk 'tnonactive(SK,i))

kedev,—dev, i=1

