
POSIX modeling in SystemCPOSIX modeling in SystemC

Hector Hector PosadasPosadas, , JesJesúúss ÁÁdamezdamez, Pablo , Pablo SSááncheznchez & &
Eugenio VillarEugenio Villar

University of CantabriaUniversity of Cantabria

Francisco Francisco BlascoBlasco
DS2DS2

OutlineOutline

zMotivation
z POSIX modeling

– Functionality
– Timed simulation

z Results
z Conclusions

•New SystemC framework
-SW and HW refined

together

Performance
& functional
verification

Architectural
mapping SystemC

HW/SW
synthesis

ITRS: Design flow evolutionITRS: Design flow evolution
Motivation

SW modeling nowadaysSW modeling nowadays

z Current industrial techniques not
adequate for HW/SW co-design flow
– Commercial RTOS simulators

• Functional but untimed models
• Difficult HW integration
• Limited performance estimations

– ISS is too slow for complex systems
• Refiment process slow

Motivation

Our approach

HW & SW modeling in SystemCHW & SW modeling in SystemC

z SystemC used for HW design

z SystemC lacks a standard model of SW
– Execution of SW code is untimed
– Actual task execution order difficult to model

in SystemC
• Scheduling capabilities cannot be directly modeled

– Refined SW code usually includes system
calls
• SystemC does not provide an RTOS API

Motivation

State of the artState of the art

z Abstract RTOS models in SpecC and SystemC
– Specific RTOS functions

• Simulation code not valid for implementation
– Low-level, timing behavior is not adequately

modeled
• “wait” statements in predefined points

– Time-slicing
– Preemption
– Interrupts…

• Communication issues
– Priority inheritance

Motivation

SW modeling in SystemCSW modeling in SystemC

z A complete SystemC RTOS model is required
– All common RTOS features for optimum

refinement
• Scheduling & preemption
• Communication & synchronization
• Timing functions: clocks, timers
• …

– Refined SW has to be directly implementable
• Real API

POSIX modeling

SW modeling in SystemCSW modeling in SystemC
z Complete, standard RTOS API required

– POSIX is the most common RTOS API
– Contains all elements required for optimum

refinement

z A time estimation technique required
– Not part of this work
– PERFidy used [1]
– Any other dynamic technique possible

POSIX modeling

[1] H. Posadas, P. Sanchez, E. Villar, F.Blasco:”System-level performance estimation in
SystemC”, DATE’04

SW modelingSW modeling

POSIX API

RTOS

PROCESSOR

...
Application SW

Task 1 Task n

POSIX modeling

POSIX API

POSIX model

SystemC

...
Application SW

Task 1 Task n

Modeling

POSIX standardPOSIX standard

Concurrency

Scheduling

Timing

Communication &
synchronization

Channels I/O Sockets
Signals Peripherals

Matemathical
Strings

Memory

POSIX

SystemC Host RTOS

POSIX modeling

Specific drivers required

Host RTOS facilitiesHost RTOS facilities

z SystemC allows using host pthreads to
implement SC_THREADs

z Most POSIX features cannot be modeled using
host RTOS
– The SystemC simulation has only one execution flow
– SystemC is one host process

• Signals, waitpid, fork, etc cannot be modeled
– Clocks, timers, timeouts depends on host simulation

time, not on estimated time for the target platform

POSIX modeling

SystemC facilitiesSystemC facilities

z The RTOS model extends the SystemC kernel
– The kernel is not modified

• Ensures compatibility with different SystemC
versions

– A reduced set of SystemC elements is needed
• SC_THREAD to provide concurrency
• “wait” and “ notify” to stop and resume the threads

– Needed to model the scheduling and synchronization

POSIX modeling

Concurrency modelingConcurrency modeling

z Parallelism
– SC_THREAD
– Threads and processes

• Limitations when modeling separate memory spaces

– Dynamic creation of threads and processes

z All SC_THREADs runs in parallel
– Tasks in the same processor cannot run in

parallel
• Scheduling

POSIX modeling

Scheduling in POSIXScheduling in POSIX

z POSIX defines several policies
– Round Robin, FIFO, Sporadic Server

• Different exit procedure
• FIFO

– process stopped in a synchronization point

• RR and SS
– a time slice is finished or a synchronization point is

reached

z Use of priorities

POSIX modeling

Scheduling Scheduling modelingmodeling
z Scheduling modeled with “wait” and “ notify”

functions
– Only the thread with higher priority is not blocked
– Scheduler execution when running thread releases the

processor

z Preemption has to be considered
z Time estimation tool is required

– Time-slice based policies
– Time events (sleeps, timeouts, timers)

POSIX modeling

SW modelingSW modeling

POSIX modeling

POSIX API

POSIX model

SystemC

...
Application SW

Task 1 Task n

TIME MANAGER TIME ESTIMATION
TOOL

ΔT= 40

ΔT= 20

ΔT= 20

PreemptionPreemption exampleexample

POSIX modeling

ΔT= 40

Time (us)

Task 1
Priority 1

Task 2
Priority 2

T= 0

T=20

T=30

T=40

T=50

T=10

Simulation
time

Estimation
time

ΔT= 20

Expected
preemption

Events

Predictable:
Timeout
expiration
T=20us

T=70

T=80

T=60

T=90 ΔT= 10

Unpredictable:
Hardware
interrupt T=65us

Delayed
preemption

Code
execution

Time
annotation

Unexpected
preemption

ΔT= 10

Delayed
preemption

B=A-6;
C=A+B;
B*=2;

A=C/B;

…

D=C+1;

Task 1 Time estimation tool

Time: 10 ns20 ns55 ns20 us

Communication & synchronizationCommunication & synchronization

z Required a complete set of communication and
synchronization mechanisms for SW refinement
– Mutexes, semaphores, conditional variables, message

queues, etc
• Wide range of options: Priority inheritance
• “wait” and “ notify” functions of SystemC are used to model

synchronization

– Asynchronous events: POSIX Signals
• An specific SC_THREAD is required to execute signal

handlers
– signal handling can require a temporal new thread

POSIX modeling

Clocks and timersClocks and timers

z POSIX standard defines several clocks
– Real-time, monotonic

• Are modeled with the SystemC time control
• Timers, alarms & sleeps can be modeled with
“wait(t)”

– Thread clocks, process clocks
• The clock values are updated with the time

estimation
• A new SC_THREAD is required to execute events

depending on this clocks (timers)

POSIX modeling

ResultsResults
z The POSIX model has been used to simulate a

GSM coder
– ETSI - EN 301 245
– 13.500 code lines
– Manually parallelized

• 9 concurrent processes
z Results

– Verify the RTOS model with the real target RTOS
– Time estimation errors compared

• SystemC (without RTOS model) vs. time in target platform
• SystemC + POSIX model vs. time in target platform

ResultsResults

z The error is lower when considering the effect of
the RTOS
– With the same estimation technique

Thread SystemC (%) POSIX (%)
pre_filtering 3.45 2.41

homing_frame_test 13.67 0.88
frame_lsp_func 4.51 0.45

frame_int_tol_fun 0.94 0.36
subframe_coder_fun 3.04 0.23

serializer_fun 6.72 6.36
vad_comp_fun 9.36 3.34

CN_encoder_fun 7.45 5.33
sid_encoding_fun 12.18 7.29

RTOS 1.84

ResultsResults

z Overhead of RTOS model is worthless respect
gain with ISS

SC (ms) SC + P (ms) ISS (ms)
Simulation

time 1,07 1,56 124

ConclusionsConclusions

z Current version of SystemC can be
extended to model a complex RTOS
– SW refinement can be done in SystemC

z SW refinement over SystemC requires a
complete RTOS model
– Standard API
– All features present in target RTOS

ConclusionsConclusions

z Close link Estimation tool – RTOS model
– Modeling of time-slices & time events
– RTOS model requires time estimations

(process & thread clocks)
– Estimation results better with RTOS model

z High-level modeling and timed simulation
of application SW is possible at source
code
– Fast estimations with enough accuracy

ThankThank YouYou !!

