POSIX modeling in SystemC

Hector Posadas, Jestis Adamez, Pablo Sanchez &
Eugenio Villar i
University of Cantabria s

Francisco Blasco

Outline

e Motivation

e POSIX modeling

— Functionality
— Timed simulation

® Results
e Conclusions

Present (130-90nm) Future (65nm -)
.
—_ —
System) System System) System
Design | Model Design " Model
+ e . - - .
SPEC
+ Y D(QE e
SPEC
HW/SW
Opt
+ \ C Cot!(pit)
RTL swW sSwW ’
omm. Perf.
Timing
Hw/Sw
ta =
Noise
\J Mod
n Test
C Cockpit)
[Auto-piot st repomo |l TSN J
Optimize Analyze ‘ + Architectura Performanc
Logic Timing MASKS mapping SystemC & fu_n_ctlo_nal
Place verification
Wire v
other |~ HW/SW
[Repository |_other | synthesis

MASKS

Motivation

SW modeling nowadays

e Current industrial technigues not
adequate for HW/SW co-design flow
— Commercial RTOS simulators

* Functional but untimed models

- Difficult HW integration
» Limited performance estimations

Our approach

. N
— 1SS Is too slow for complex systems

« Refiment process slow

Motivation

HW & SW modeling in SystemC

e SystemC used for HW design

e SystemC lacks a standard model of SW
— Execution of SW code I1s untimed

— Actual task execution order difficult to model
In SystemC

- Scheduling capabilities cannot be directly modeled
— Refined SW code usually includes system
calls
« SystemC does not provide an RTOS API

Motivation

State of the art

e Abstract RTOS models in SpecC and SystemC

— Specific RTOS functions
- Simulation code not valid for implementation

— Low-level, timing behavior is not adequately
modeled

« “wait” statements in predefined points
— Time-slicing
— Preemption
— Interrupts...
« Communication issues
— Priority inheritance

POSIX modeling

SW modeling in SystemC

e A complete SystemC RTOS model is required

— All common RTOS features for optimum
refinement
« Scheduling & preemption
« Communication & synchronization
* Timing functions: clocks, timers

— Refined SW has to be directly implementable
* Real API

POSIX modeling

SW modeling in SystemC

e Complete, standard RTOS API required
— POSIX is the most common RTOS API

— Contains all elements required for optimum
refinement

e A time estimation technique required
— Not part of this work
— PERFIdy used [1]
— Any other dynamic technique possible

[1] H. Posadas, P. Sanchez, E. Villar, F.Blasco:”System-level performance estimation in
SystemC”, DATE’04

POSIX modeling

SW modeling

Application SW

POSIX API

RTOS

PROCESSOR

Application SW

Task 1 ___

POSIX API

POSIX model

SystemC

POSIX modeling

POSIX standard

Specific drivers required

SystemC Host RTOS

POSIX modeling

Host RTOS facilities

e SystemC allows using host pthreads to
Implement SC_THREADSs

e Most POSIX features cannot be modeled using
host RTOS

— The SystemC simulation has only one execution flow

— SystemC is one host process
- Signals, waitpid, fork, etc cannot be modeled

— Clocks, timers, timeouts depends on host simulation
time, not on estimated time for the target platform

POSIX modeling

SystemC facilities

e The RTOS model extends the SystemC kernel

— The kernel is not modified

* Ensures compatibility with different SystemC
versions

— A reduced set of SystemC elements is needed
- SC_THREAD to provide concurrency

« “wait” and “notify” to stop and resume the threads
— Needed to model the scheduling and synchronization

POSIX modeling

Concurrency modeling

e Parallelism
— SC_THREAD

— Threads and processes
» Limitations when modeling separate memory spaces

— Dynamic creation of threads and processes

e All SC_THREADS runs in parallel

— Tasks in the same processor cannot run in
parallel

» Scheduling

POSIX modeling

Scheduling in POSIX

e POSIX defines several policies

— Round Robin, FIFO, Sporadic Server

* Different exit procedure

* FIFO
— process stopped in a synchronization point

* RR and SS

— atime slice is finished or a synchronization point is
reached

e Use of priorities

POSIX modeling

Scheduling modeling

e Scheduling modeled with “wait” and “ notify”
functions

— Only the thread with higher priority is not blocked

— Scheduler execution when running thread releases the
processor

e Preemption has to be considered

e Time estimation tool is required
— Time-slice based policies
— Time events (sleeps, timeouts, timers)

POSIX modeling

SW modeling

Application SW

POSIX API

POSIX model

TIME MANAGER Ge— TIME ETS(';I-CIJI\II_IATION

POSIX modeling

Preemption example

Task 1
B=A-6;
C=A+B;
B*=2;

A=C/B:;
D=C+1;

Time estimation tool

Time: 20 us

T=0

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80
T=90

Time (us)

Task 1 | Task 2
Priority 1 | Priority 2

Simulation Estimation
time time
AT=20

AT=20

Expected
preemption

Unexpected
preemption

AT= 1OI

Delayed
preemption

Code Time

Events

Predictable:
Timeout
expiration
T=20us

AT= 20

Unpredictable:
Hardware
interrupt T=65us

Delayed

[0 execution [annotation M preemption

POSIX modeling

Communication & synchronization

e Required a complete set of communication and
synchronization mechanisms for SW refinement

— Mutexes, semaphores, conditional variables, message
gueues, etc
- Wide range of options: Priority inheritance
- “wait” and “notify” functions of SystemC are used to model
synchronization
— Asynchronous events: POSIX Signals

« An specific SC_THREAD is required to execute signal
handlers

— signal handling can require a temporal new thread

POSIX modeling

Clocks and timers

e POSIX standard defines several clocks

— Real-time, monotonic
« Are modeled with the SystemC time control
* Timers, alarms & sleeps can be modeled with
“wait(t)”
— Thread clocks, process clocks

* The clock values are updated with the time
estimation

« A new SC_THREAD is required to execute events
depending on this clocks (timers)

Results

e The POSIX model has been used to simulate a
GSM coder

— ETSI - EN 301 245
— 13.500 code lines

— Manually parallelized
* 9 concurrent Processes

e Results
— Verify the RTOS model with the real target RTOS

— Time estimation errors compared
« SystemC (without RTOS model) vs. time in target platform
« SystemC + POSIX model vs. time in target platform

Results

e The error is lower when considering the effect of
the RTOS

— With the same estimation technique

— famenttofn| 0% | 03
| serializerfun] 672 | 636
— wdcompfn| 9% | 3m
— Rios| | 1w

Results

e Overhead of RTOS model is worthless respect
gain with ISS

| SC(ms) |SC+ P (ms)|ISS (ms)

Slmulatlon
time 1,56 124

Conclusions

e Current version of SystemC can be
extended to model a complex RTOS

— SW refinement can be done in SystemC

e SW refinement over SystemC requires a
complete RTOS model

— Standard API
— All features present in target RTOS

Conclusions

e Close link Estimation tool — RTOS model
— Modeling of time-slices & time events

— RTOS model requires time estimations
(process & thread clocks)

— Estimation results better with RTOS model

e High-level modeling and timed simulation
of application SW is possible at source
code

— Fast estimations with enough accuracy

T'hank You !

