
Sudarshan Banerjee, Elaheh Bozorgzadeh,

Nikil Dutt

Center for Embedded Computer Systems (CECS)

Donald Bren School of Information and Computer Sciences

University of California, Irvine

http://www.cecs.uci.edu/~aces

*Work partially supported by NSF grants CCR-0203813, CCR-0205712

PARLGRAN: Parallelism granularity
selection for scheduling task chains on

dynamically reconfigurable architectures *

#2

Outline

Introduction
Dynamically reconfigurable architecture

Problem overview

Related work

Detailed problem description

Approach

Experiments

Conclusion

#3

Introduction

Problem space

Design
Specification

Architecture with
partial RTR

Task graph

Application mapping

Partial dynamic reconfiguration (RTR)
Modify hardware during application execution

Performance

Commercial example: Xilinx Virtex architecture

Maximize performance under area constraint

#4

Dynamically reconfigurable architecture

Column-based partial RTR

Single context

T1

On-chip shared memory

CLB

Off-chip memory

Width

H
ei

gh
t

T2

Significant reconfig delay

Sequential reconfiguration

Configuration prefetch

E1

E2

R2

Tim
e

Width

E1

E2

R2

Width

Hide reconfig delay

Placement constraints

#5

Problem overview
Task chains

Key tasks such as DCT are data-parallel

T1

T2

Task chain

T3

Task execution time predictable

Instantiate multiple copies of data-parallel tasks

Common in image processing applications

Each copy uses identical HW resources, processes
different volumes of data

Result of task execution on one data block
independent of results on another block

Much more scope with partial RTR by reusing space
for completed tasks

Proportional to data volume

#6

Problem overview (contd)

T1

T2

Task chain

2T1
1T1

3T1

2T2
1T2

T1

2T2
1T2

Determine number of instances of each task

Key challenges: Physical (placement), architectural constraints

Maximize application performance by selecting
parallelism granularity for individual data-parallel tasks

Determine workload of each task instance
Granularity

#7

Related work

Large body of work on mapping task chains to reconfigurable archi.

Noguera et al (CODES+ISSS ’04), Quinn et al (FCCM ’03), …

NO partial RTR considerations

Or, NO placement considerations

Work on joint scheduling and placement for dependency graphs

Fekete et al (DATE ’01), Yuh et al (ICCAD ’04)

Theoretical treatment (closer to rectangle-packing)

NO considerations of prefetch, architectural constraints

Work in compiler domain on program parallelization

NO consideration of placement, other aspects of partial RTR

Banerjee et al (DAC ’05)
Detailed physical + architectural considerations
NO granularity selection

#8

Outline

Introduction
Dynamically reconfigurable architecture

Problem overview

Related work

Detailed problem formulation
Approach

Experiments

Conclusion

#9

Key issues
Reconfiguration overhead

Width

E1

Tim
e

Sequential execution

E1
4E1

3E1
2E1

1

Width

Tim
e

“ Ideal” parallel execution

Ideal gain

Load balancing

E1
2E1

1

Width

Tim
e

R1
2

R1
4

R1
3

Reduced gain

E1
3

Execution with reconfig
overhead

E1
4

E1
2E1

1

Width
Tim

e

R1
2

R1
4

R1
3

Target gain
E1

3
“ Load-balanced”

Execution

#10

Key issues: precedence constraints

T1

T2

2T1
1T1

3T1

2T2
1T2

Width

Tim
e

E1

E2

R2 E1
1

Width
Tim

e

R1
2

E1
2 R2

1

R2
2

E2
2 E2

1

E1
1

Width

Tim
e

R1
2

E1
2

R2
1

R2
2

E2
2E2

1

R1
3

E1
3

2T2
1T2

1T1
2T1

Case A Case BTask chain

#11

Detailed problem formulation
Problem inputs:

Objective:

Task chain : some tasks are data-parallel

Hard constraint on area (number of columns)

Maximize application performance

Number of instances (copies) of each data-parallel task

Workload (execution time) of each instance

Placed schedule for transformed task graph
Start time of each task instance
Physical location of each task instance

#12

Outline

Introduction
Dynamically reconfigurable architecture

Problem overview

Related work

Detailed problem description

Approach
Experiments

Conclusion

#13

Approach

MFF (Modified First-Fit) heuristic

Simple, local chain-specific optimizations for less fragmentation

MFF heuristic for task chains (no granularity selection)

Joint scheduling and placement of task chain is NP-complete
Detailed analysis of chain-scheduling with partial RTR

Adaptation of FF (first-fit) placement based scheduling for
dependency graphs (DAC ’05)

PARLGRAN (granularity selection) heuristic

Simple, local optimizations based on MFF principles

Select number of instances, Load-balancing

#14

Simple fragmentation reduction

Width

Tim
e

E1

E2

R2

R3

E3

FF: More fragmentation
(First Fit)

Width

Tim
e

E1

E2

R2

R3

Gain

MFF: Less fragmentation
(Modified First Fit)

E3

Ri
Reconfig process for Task Ti

Task Ti ready, in wait state

Ei Execute Task Ti

#15

Exploiting slack in reconfiguration

Width

Tim
e

E1

E2

R2

R4

R3

E3

More fragmentation

Width

Tim
e

E1

E2

R2

R4

R3

E3

Gain

Less fragmentation

Ri
Reconfig process for Task Ti

Task Ti ready, in wait state

Ei Execute Task Ti

#16

PARLGRAN

Chain-scheduling (MFF) provides insight
Local optimization helps improve performance

Heuristic execution time comparable to task execution

Simple, greedy approach
Attempt to improve solution quality locally

Heuristic outline
Static pruning
Dynamic granularity selection

Application in semi-online scenario

Semi-online: Key information available only at run-time

Task execution time (data size), area constraint

#17

PARLGRAN: Static pruning

Width

Tim
e

E1
1

E2
1

R2
1

Width

Tim
e

Task 2 delayed

R2
1

E2
1

E1
1

E1
2

R1
2

Pruning based only on timing considerations
Static

No placement considerations

#18

PARLGRAN: Load balancing

Width

Tim
e

E1
1

E2
1

R2
1

R1
2

E1
2

Identical finish times for
task copies

Width

Tim
e

E1
1

E2
1

R2
1

R1
2

E1
2

Different finish times for
task copies

Gain

#19

PARLGRAN
For each task Ti

Determine earliest execution start time
(consider placement, reconfiguration mechanism)

While (no degradation in start time)

1. Add new instance of parent task
(assign physical location, start time)

2. Adjust workload (load balancing) of existing instances
of parent task

Apply local optimizations (from MFF) to improve
schedule

#20

Outline

Introduction
Dynamically reconfigurable architecture

Problem overview

Related work

Detailed problem description

Approach

Experiments
Conclusion

#21

Experimental Setup
Large set of synthetic benchmarks

Application case study

Varying chain length
Varying task execution time
Varying area constraints

Individual task data obtained from constrained (placement, routing)
synthesis on XC2V2000 Design space

Instance Generator

4 10 20

Chain
lengths

Area
constraint

….….
Task exec.

time

Chain instance

Tight Loose

JPEG encoding

#22

Experiments
Heuristic quality of MFF (chain-scheduling)

Heuristic quality of PARLGRAN (granularity selection)

Compare with FF (first-fit based approach, DAC ’05)

Compare with FF

Compare schedule length of PARLGRAN with MFF, MAXPARL

Estimated run-time of PARLGRAN

Application case study of JPEG encoding

Compare with MAXPARL

MAXPARL: maximum parallelization in available area
(fixed granularity DAG, scheduled with configuration prefetch)

#23

Heuristic quality: MFF Vs FF
MFF better in 21% tests (243/1140)
MFF worse in 0.4% tests (5/1140)

Worst case for MFF:
Negligible increase in schedule length (0.44%)

Good cases for MFF:
10% tests, FF schedule length longer by 3 %

MFF, FF quality similar on long chains, loose area constraint

MFF frequently generates better schedules on short chains,

tight area constraint

#24

Experiments
Heuristic quality of MFF (chain-scheduling)

Heuristic quality of PARLGRAN (granularity selection)

Compare with FF (first-fit based approach, DAC ’05)

Compare with FF

Compare schedule length of PARLGRAN with MFF, MAXPARL

Estimated run-time of PARLGRAN

Application case study of JPEG encoding

Compare with MAXPARL

MAXPARL: maximum parallelization in available area
(fixed granularity DAG, scheduled with configuration prefetch)

#25

Heuristic quality: PARLGRAN Vs FF
Quality = (TFF – Tparl)/TFF* 100

> 50%Average gain

58.3%16-20

55.0%12-15

51.7%8-11

46.3%4-7

Average gainChain length

TFF Schedule length generated by FF (first-fit)

Tparl
Schedule length generated by PARLGRAN

Even with high reconfiguration overhead, significant benefits
from exploiting data-parallelism

#26

Heuristic quality: PARLGRAN Vs MAXPARL
Quality = (Tmax – Tparl)/Tmax* 100

> 15%Avg gain

-17.5%151%33.8%16-20

-15.5%82.3%18.5%12-15

-30.9%109.6%15.8%8-11

-49.6%142.5%9.8%4-7
WorstBestAverageChain length

PARLGRAN much better than “ static parallelization”
as chain length increases

Tmax Schedule length generated by MAXPARL
(maximum parallelization in available area)

#27

Case study on JPEG encoding
Tasks synthesized under placement, routing constraints on XC2V2000

34.3734.1841.347

27.7128.3840.209
28.6029.0841.348

35.1335.3241.346

40.3040.6842.865512 X 512 JPG
9.0812.7910.109

9.0812.1111.248
10.0511.3811.247
10.8112.5211.246
12.3612.7312.715256 X 256 JPG

Tparl (ms)Tmax (ms)Tmff (ms)Area constraintTest

Aggregate task area = 11 columns

#28

Estimated run- time of PARLGRAN
Preliminary estimate on PowerPC processor @400 MHz
(available on Xilinx Virtex-II Pro platform)

Estimated run-time: 3-4 ms
Large experiment: 12 tasks, 20 columns

DCT execution time: ~11 ms
512 X 512 colour image

PARLGRAN suitable for semi-online scenarios
Semi-online:

Task execution time, area constraint available only at run-time

#29

Contribution

Future work

Conclusion

Communications bandwidth, memory issues
Power, energy considerations
Extend heuristic for DAGs (directed acyclic graphs)

Approach to select data-parallelism granularity for task chains
on dynamically reconfigurable architectures with partial RTR

Integrated in a joint scheduling, placement formulation
Physical location, reconfiguration start time, execution start time for
each task instance

Determines number of instances of data-parallel tasks, AND,
execution time (workload) of each instance

Large set of synthetic experiments + JPEG encoding case study
demonstrate heuristic quality

#30

Thank You !

Questions/Comments?

E-mail: banerjee@uci.edu

