
Sudarshan Banerjee, Elaheh Bozorgzadeh,

Nikil Dutt

Center for Embedded Computer Systems (CECS)

Donald Bren School of Information and Computer Sciences

University of California, Irvine

http://www.cecs.uci.edu/~aces

*Work partially supported by NSF grants CCR-0203813, CCR-0205712

PARLGRAN: Parallelism granularity
selection for scheduling task chains on

dynamically reconfigurable architectures *

#2

Outline

z Introduction
~ Dynamically reconfigurable architecture

z Problem overview

z Related work

z Detailed problem description

z Approach

z Experiments

z Conclusion

#3

Introduction

z Problem space

Design
Specification

Architecture with
partial RTR

Task graph

Application mapping

z Partial dynamic reconfiguration (RTR)
~ Modify hardware during application execution

Performance

~ Commercial example: Xilinx Virtex architecture

Maximize performance under area constraint

#4

Dynamically reconfigurable architecture

z Column-based partial RTR

z Single context

T1

On-chip shared memory

CLB

Off-chip memory

Width

H
ei

gh
t

T2

~ Significant reconfig delay

z Sequential reconfiguration

z Configuration prefetch

E1

E2

R2

Tim
e

Width

E1

E2

R2

Width

Hide reconfig delay

~ Placement constraints

#5

Problem overview
z Task chains

~ Key tasks such as DCT are data-parallel

T1

T2

Task chain

T3

~ Task execution time predictable

Instantiate multiple copies of data-parallel tasks

~ Common in image processing applications

~ Each copy uses identical HW resources, processes
different volumes of data

� Result of task execution on one data block
independent of results on another block

~ Much more scope with partial RTR by reusing space
for completed tasks

� Proportional to data volume

#6

Problem overview (contd)

T1

T2

Task chain

2T1
1T1

3T1

2T2
1T2

T1

2T2
1T2

~ Determine number of instances of each task

Key challenges: Physical (placement), architectural constraints

Maximize application performance by selecting
parallelism granularity for individual data-parallel tasks

~ Determine workload of each task instance
Granularity

#7

Related work

z Large body of work on mapping task chains to reconfigurable archi.

Noguera et al (CODES+ISSS ’04), Quinn et al (FCCM ’03), …

Î NO partial RTR considerations

Or, NO placement considerations

z Work on joint scheduling and placement for dependency graphs

Fekete et al (DATE ’01), Yuh et al (ICCAD ’04)

Î Theoretical treatment (closer to rectangle-packing)

NO considerations of prefetch, architectural constraints

z Work in compiler domain on program parallelization

Î NO consideration of placement, other aspects of partial RTR

Banerjee et al (DAC ’05)
Î Detailed physical + architectural considerations

NO granularity selection

#8

Outline

z Introduction
~ Dynamically reconfigurable architecture

z Problem overview

z Related work

z Detailed problem formulation
z Approach

z Experiments

z Conclusion

#9

Key issues
z Reconfiguration overhead

Width

E1

Tim
e

Sequential execution

E1
4E1

3E1
2E1

1

Width

Tim
e

“ Ideal” parallel execution

Ideal gain

z Load balancing

E1
2E1

1

Width

Tim
e

R1
2

R1
4

R1
3

Reduced gain

E1
3

Execution with reconfig
overhead

E1
4

E1
2E1

1

Width
Tim

e

R1
2

R1
4

R1
3

Target gain
E1

3
“ Load-balanced”

Execution

#10

Key issues: precedence constraints

T1

T2

2T1
1T1

3T1

2T2
1T2

Width

Tim
e

E1

E2

R2 E1
1

Width
Tim

e

R1
2

E1
2 R2

1

R2
2

E2
2 E2

1

E1
1

Width

Tim
e

R1
2

E1
2

R2
1

R2
2

E2
2E2

1

R1
3

E1
3

2T2
1T2

1T1
2T1

Case A Case BTask chain

#11

Detailed problem formulation
Problem inputs:

Objective:

~ Task chain : some tasks are data-parallel

~ Hard constraint on area (number of columns)

Maximize application performance

~ Number of instances (copies) of each data-parallel task

~ Workload (execution time) of each instance

~ Placed schedule for transformed task graph
� Start time of each task instance
� Physical location of each task instance

#12

Outline

z Introduction
~ Dynamically reconfigurable architecture

z Problem overview

z Related work

z Detailed problem description

z Approach
z Experiments

z Conclusion

#13

Approach

z MFF (Modified First-Fit) heuristic

~ Simple, local chain-specific optimizations for less fragmentation

~ MFF heuristic for task chains (no granularity selection)

~ Joint scheduling and placement of task chain is NP-complete
z Detailed analysis of chain-scheduling with partial RTR

~ Adaptation of FF (first-fit) placement based scheduling for
dependency graphs (DAC ’05)

z PARLGRAN (granularity selection) heuristic

~ Simple, local optimizations based on MFF principles

~ Select number of instances, Load-balancing

#14

Simple fragmentation reduction

Width

Tim
e

E1

E2

R2

R3

E3

FF: More fragmentation
(First Fit)

Width

Tim
e

E1

E2

R2

R3

Gain

MFF: Less fragmentation
(Modified First Fit)

E3

Ri
Reconfig process for Task Ti

Task Ti ready, in wait state

Ei Execute Task Ti

#15

Exploiting slack in reconfiguration

Width

Tim
e

E1

E2

R2

R4

R3

E3

More fragmentation

Width

Tim
e

E1

E2

R2

R4

R3

E3

Gain

Less fragmentation

Ri
Reconfig process for Task Ti

Task Ti ready, in wait state

Ei Execute Task Ti

#16

PARLGRAN

z Chain-scheduling (MFF) provides insight
~ Local optimization helps improve performance

z Heuristic execution time comparable to task execution

z Simple, greedy approach
~ Attempt to improve solution quality locally

z Heuristic outline
~ Static pruning
~ Dynamic granularity selection

~ Application in semi-online scenario

Semi-online: Key information available only at run-time

Task execution time (data size), area constraint

#17

PARLGRAN: Static pruning

Width

Tim
e

E1
1

E2
1

R2
1

Width

Tim
e

Task 2 delayed

R2
1

E2
1

E1
1

E1
2

R1
2

~ Pruning based only on timing considerations
Static

~ No placement considerations

#18

PARLGRAN: Load balancing

Width

Tim
e

E1
1

E2
1

R2
1

R1
2

E1
2

Identical finish times for
task copies

Width

Tim
e

E1
1

E2
1

R2
1

R1
2

E1
2

Different finish times for
task copies

Gain

#19

PARLGRAN
For each task Ti

� Determine earliest execution start time
(consider placement, reconfiguration mechanism)

� While (no degradation in start time)

1. Add new instance of parent task
(assign physical location, start time)

2. Adjust workload (load balancing) of existing instances
of parent task

� Apply local optimizations (from MFF) to improve
schedule

#20

Outline

z Introduction
~ Dynamically reconfigurable architecture

z Problem overview

z Related work

z Detailed problem description

z Approach

z Experiments
z Conclusion

#21

Experimental Setup
z Large set of synthetic benchmarks

z Application case study

~ Varying chain length
~ Varying task execution time
~ Varying area constraints

~ Individual task data obtained from constrained (placement, routing)
synthesis on XC2V2000 Design space

Instance Generator

4 10 20

Chain
lengths

Area
constraint

….….
Task exec.

time

Chain instance

Tight Loose

~ JPEG encoding

#22

Experiments
z Heuristic quality of MFF (chain-scheduling)

z Heuristic quality of PARLGRAN (granularity selection)

~ Compare with FF (first-fit based approach, DAC ’05)

~ Compare with FF

~ Compare schedule length of PARLGRAN with MFF, MAXPARL

z Estimated run-time of PARLGRAN

z Application case study of JPEG encoding

~ Compare with MAXPARL

MAXPARL: maximum parallelization in available area
(fixed granularity DAG, scheduled with configuration prefetch)

#23

Heuristic quality: MFF Vs FF
~ MFF better in 21% tests (243/1140)
~ MFF worse in 0.4% tests (5/1140)

~ Worst case for MFF:
Negligible increase in schedule length (0.44%)

~ Good cases for MFF:
10% tests, FF schedule length longer by 3 %

z MFF, FF quality similar on long chains, loose area constraint

z MFF frequently generates better schedules on short chains,

tight area constraint

#24

Experiments
z Heuristic quality of MFF (chain-scheduling)

z Heuristic quality of PARLGRAN (granularity selection)

~ Compare with FF (first-fit based approach, DAC ’05)

~ Compare with FF

~ Compare schedule length of PARLGRAN with MFF, MAXPARL

z Estimated run-time of PARLGRAN

z Application case study of JPEG encoding

~ Compare with MAXPARL

MAXPARL: maximum parallelization in available area
(fixed granularity DAG, scheduled with configuration prefetch)

#25

Heuristic quality: PARLGRAN Vs FF
Quality = (TFF – Tparl)/TFF* 100

> 50%Average gain

58.3%16-20

55.0%12-15

51.7%8-11

46.3%4-7

Average gainChain length

TFF Schedule length generated by FF (first-fit)

Tparl
Schedule length generated by PARLGRAN

Even with high reconfiguration overhead, significant benefits
from exploiting data-parallelism

#26

Heuristic quality: PARLGRAN Vs MAXPARL
Quality = (Tmax – Tparl)/Tmax* 100

> 15%Avg gain

-17.5%151%33.8%16-20

-15.5%82.3%18.5%12-15

-30.9%109.6%15.8%8-11

-49.6%142.5%9.8%4-7
WorstBestAverageChain length

PARLGRAN much better than “ static parallelization”
as chain length increases

Tmax Schedule length generated by MAXPARL
(maximum parallelization in available area)

#27

Case study on JPEG encoding
z Tasks synthesized under placement, routing constraints on XC2V2000

34.3734.1841.347

27.7128.3840.209
28.6029.0841.348

35.1335.3241.346

40.3040.6842.865512 X 512 JPG
9.0812.7910.109

9.0812.1111.248
10.0511.3811.247
10.8112.5211.246
12.3612.7312.715256 X 256 JPG

Tparl (ms)Tmax (ms)Tmff (ms)Area constraintTest

z Aggregate task area = 11 columns

#28

Estimated run- time of PARLGRAN
z Preliminary estimate on PowerPC processor @400 MHz

(available on Xilinx Virtex-II Pro platform)

z Estimated run-time: 3-4 ms
~ Large experiment: 12 tasks, 20 columns

z DCT execution time: ~11 ms
~ 512 X 512 colour image

z PARLGRAN suitable for semi-online scenarios
Semi-online:

Task execution time, area constraint available only at run-time

#29

Contribution

Future work

Conclusion

~ Communications bandwidth, memory issues
~ Power, energy considerations
~ Extend heuristic for DAGs (directed acyclic graphs)

~ Approach to select data-parallelism granularity for task chains
on dynamically reconfigurable architectures with partial RTR

~ Integrated in a joint scheduling, placement formulation
� Physical location, reconfiguration start time, execution start time for

each task instance

~ Determines number of instances of data-parallel tasks, AND,
execution time (workload) of each instance

~ Large set of synthetic experiments + JPEG encoding case study
demonstrate heuristic quality

#30

Thank You !

Questions/Comments?

E-mail: banerjee@uci.edu

