PARLGRAN: Parallelism granularity
selection for scheduling task chains on
dynamically reconfigurable architectures *

Sudarshan Banerjee, Elaheh Bozorgzadeh,
Nikil Dutt

Center for Embedded Computer Systems (CECS)
Donald Bren School of Information and Computer Sciences
University of California, Irvine

http://www.cecs.uci.edu/~aces

*Work partially supported by NSF grants CCR-0203813, CCR-0205712

Outline

Introduction
® Dynamically reconfigurable architecture

Problem overview

Related work

Detailed problem description
Approach

Experiments

Conclusion

#2

Introduction

Partial dynamic reconfiguration (RTR) G’
® Modify hardware during application executi

® Commercial example: Xilinx Virtex architecture

Design
Specification _~—

Applicati

Task graph]

mapping

Architecture with
partial RTR

Problem space
Maximize performance under area constraint

#3

Dynamically reconfigurable architecture

Off-chip memory
I

]
I
)

%-ips
!

Height
|

|
= |

1

ar

i

m

|

Width

s|

7

| LN [

Single context
® Significant reconfig delay

Column-based partial RTR
® Placement constraints

Sequential reconfiguration

Configuration prefetch
Hide reconfig delay

«— oWl
A
N

Problem overview

Task chains Task chain

® Common in image processing applications @

® Task execution time predictable
» Proportional to data volume 4

® Key tasks such as DCT are data-parallel CID
<+ Result of task execution on one data block

independent of results on another block Y

Instantiate multiple copies of data-parallel tasks :

® Each copy uses identical HW resources, processes

different volumes of data

® Much more scope with partial RTR by reusing space
for completed tasks

Problem overview (contd)

Task chain

@, @, OOO®
(@ @) @ @ @

® Determine number of instances of each task
® Determine workload of each task instance

Maximize application performance by selecting
parallelism granularity for individual data-parallel tasks

Key challenges: Physical (placement), architectural constraints

Related work

Work in compiler domain on program parallelization

=2 NO consideration of placement, other aspects of partial RTR
Large body of work on mapping task chains to reconfigurable archi.
Noguera et al (CODES+ISSS '04), Quinn et al (FCCM '03), ...

=» NO partial RTR considerations

Or, NO placement considerations
Work on joint scheduling and placement for dependency graphs
Fekete et al (DATE '01), Yuh et al (ICCAD '04)

=>» Theoretical treatment (closer to rectangle-packing)

NO considerations of prefetch, architectural constraints
Banerjee et al (DAC '05)
=>» Detailed physical + architectural considerations

NO granularity selection

#7

Outline

Introduction
® Dynamically reconfigurable architecture

Problem overview

Related work

Detailed problem formulation
Approach
Experiments

Conclusion

Key Issues

Reconfiguration overhead
Load balancing

awilL

E1

Width
Sequential execution

Ei|Ef|E:|El

A

Ideal gain

pum——C 1V

v

Width >
“Ideal” parallel execution

“Load-balanced”
Execution

R4
Eil 2 [R3
1 E%

P11

=]
[Target gain

Width g

R?
y =t
ES s
! E31> R
{ Reduced gain

Width >
Execution with reconfig

awi |
N
N

overhead

Key Issues: precedence constraints

Task chain

SWl]

v

Case A

SWl]

v

Case B

QOO

SWl]

v

#10

Detailed problem formulation

Problem inputs:

® Task chain : some tasks are data-parallel

® Hard constraint on area (humber of columns)

Objective: Maximize application performance
® Number of instances (copies) of each data-parallel task
® Workload (execution time) of each instance

® Placed schedule for transformed task graph
« Start time of each task instance
<+ Physical location of each task instance

#11

Outline

Introduction
® Dynamically reconfigurable architecture

Problem overview
Related work

Detailed problem description

Approach
Experiments

Conclusion

#12

Approach

Detailed analysis of chain-scheduling with partial RTR
® Joint scheduling and placement of task chain is NP-complete

® MFF heuristic for task chains (no granularity selection)

MFF (Modified First-Fit) heuristic

® Adaptation of FF (first-fit) placement based scheduling for
dependency graphs (DAC '05)

® Simple, local chain-specific optimizations for less fragmentation

PARLGRAN (granularity selection) heuristic

® Simple, local optimizations based on MFF principles

® Select number of instances, Load-balancing

#13

Simple fragmentation reduction

R
R

R
R

R
R

—
3
@

Width

Width

Ion

Less fragmentati

ion MFF

More fragmentat

FF

Irst Fit)

dF

(Modifie

Irst Fit)

(F

Reconfig process for Task T,

R

Execute Task T,

E;

In wait state

j Task T, ready,

#14

awi |

Exploiting slack in reconfiguration

s
/§/§/j/;/f/f/f//
e s
e s
e s
e s
/ﬁ//
]
- »
Widt >

More fragmentation

awi |

7 RZ
=
E3 R 2
Gain
Width >

Less fragmentation

Execute Task T,

Ri

Reconfig process for Task T,

j Task T, ready, in wait state

#15

PARLGRAN

Chain-scheduling (MFF) provides insight
® Local optimization helps improve performance

Heuristic execution time comparable to task execution

® Application in semi-online scenario

Semi-online: Key information available only at run-time

Task execution time (data size), area constraint

Simple, greedy approach

® Attempt to improve solution quality locally

Heuristic outline
® Static pruning
® Dynamic granularity selection

#16

SWl]

PARLGRAN: Static pruning

Rz
E1 S| Bl FE—
3 * R>
® Task a ;
El yed
1
2 EL
Width - Width -
Static

® Pruning based only on timing considerations

® No placement considerations

#17

PARLGRAN: Load balancing

1 R 1 R
5| E E2 | E 2
R> R
1
= E> |
$ Gain
Width Width

Ildentical finish times for Different finish times for
task copies task copies

#18

PARLGRAN

For each task T,

= Determine earliest execution start time
(consider placement, reconfiguration mechanism)

= While (no degradation in start time)

1. Add new instance of parent task

(assign physical location, start time)
2. Adjust workload (load balancing) of existing instances

of parent task

= Apply local optimizations (from MFF) to improve
schedule

#19

Outline

Introduction
® Dynamically reconfigurable architecture

Problem overview
Related work
Detailed problem description

Approach
Experiments

Conclusion

#20

Experimental Setup

Large set of synthetic benchmarks

® Individual task data obtained from constrained (placement, routing)
synthesis on XC2Vv2000 Design space

® Varying chain length Instance Generator

® Varying task execution time

: : Chain _
® Varying area constraints lengths] [|1 | |
Task expc.
Application case study time mm T

|1 | 1]
Chain instanc® < >

Area

confstramt [| |]
G G

® JPEG encoding

#21

Experiments

Heuristic quality of PARLGRAN (granularity selection)

® Compare with FF
® Compare with MAXPARL

MAXPARL: maximum parallelization in available area
(fixed granularity DAG, scheduled with configuration prefetch)

Application case study of JPEG encoding
® Compare schedule length of PARLGRAN with MFF, MAXPARL

Estimated run-time of PARLGRAN

#22

Heuristic quality: MFF Vs FF

® MFF better in 21% tests (243/1140)
® MFF worse in 0.4% tests (5/1140)

® Worst case for MFF:
Negligible increase in schedule length (0.44%)

® Good cases for MFF:
10% tests, FF schedule length longer by 3 %

MFF, FF quality similar on long chains, loose area constraint

MFF frequently generates better schedules on short chains,
tight area constraint

Experiments

Heuristic quality of MFF (chain-scheduling)
® Compare with FF (first-fit based approach, DAC '05)

Application case study of JPEG encoding
® Compare schedule length of PARLGRAN with MFF, MAXPARL

Estimated run-time of PARLGRAN

#24

Heuristic quality: PARLGRAN Vs FF
Quality = (Tgp — Tpa)/Tee* 100

Chain length | Average gain
4-7 46.3%
8-11 51.7%
12-15 55.0%
16-20 58.3%
Average gain > 50%

Even with high reconfiguration overhead, significant benefits

from exploiting data-parallelism

Ter Schedule length generated by FF (first-fit)

Schedule length generated by PARLGRAN

#25

Heuristic quality: PARLGRAN Vs MAXPARL

Quality = (Trax — Tpar)/ Tmax™ 100
Chain length | Average Best Worst
4-7 9.8% 142.5% -49.6%
8-11 15.8% 109.6% -30.9%
12-15 18.5% 82.3% -15.5%
16-20 33.8% 151% -17.5%
Avg gain > 15%

PARLGRAN much better than “static parallelization”
as chain length increases

[T ax] Schedule length generated by MAXPARL

(maximum parallelization in available area)

#26

Case study on JPEG encoding

Tasks synthesized under placement, routing constraints on XC2Vv2000
Aggregate task area = 11 columns

Test Area constraint | T (ms) | T, (MS) Tpan (Ms)
256 X 256 JPG 5 12.71 12.73 12.36

6 11.24 12.52 10.81

7 11.24 11.38 10.05

8 11.24 12.11 9.08

I [o [110] 1279 [908 ||

512 X 512 JPG 5 42.86 40.68 40.30

6 41.34 35.32 35.13

7 41.34 34.18 34.37

8 41.34 29.08 28.60

9 40.20 28.38 27.71

#27

Estimated run- time of PARLGRAN

Preliminary estimate on PowerPC processor @400 MHz
(available on Xilinx Virtex-1l Pro platform)

Estimated run-time: 3-4 ms
® Large experiment: 12 tasks, 20 columns

DCT execution time: ~11 ms
® 512 X512 colour image

PARLGRAN suitable for semi-online scenarios
Semi-online;

Task execution time, area constraint available only at run-time

#28

Conclusion

Contribution

® Approach to select data-parallelism granularity for task chains
on dynamically reconfigurable architectures with partial RTR

® Determines number of instances of data-parallel tasks, AND,
execution time (workload) of each instance

® Integrated in ajoint scheduling, placement formulation

< Physical location, reconfiguration start time, execution start time for
each task instance

® Large set of synthetic experiments + JPEG encoding case study
demonstrate heuristic quality

Future work
® Communications bandwidth, memory issues
® Power, energy considerations
® Extend heuristic for DAGs (directed acyclic graphs)

#29

Thank You !

Questions/Comments?

E-mail: banerjee@uci.edu

