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Interconnect Delay Dominates

(source: ITRS 2003)
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What is Wire Sizing?
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Continuous wire shaping
[Fishburn+, TCAD’96, DATE97;  
Chen+, DAC’96, DAC’97]

CL

Discrete wire sizing
[Cong-Leung, ICCAD’93]
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w2 w1
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1-width sizing (1-WS)
[Cong-Pan, DAC’99] CL

CL

2-width sizing (2-WS)
[Cong-Pan, DAC’99]

……

WS is an effective way to reduce distributed RC delay
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What is Scattering Effect?

Mesoscopic scale effect for interconnect
Example: surface roughness

Dunn and 
Kaloyeros, (2000)
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Two Kinds of Scattering Effects

Surface Roughness Effect
› Wetting and nucleation of Cu
› FS model: [Fuchs, 1938] and 

[Sondheimer, 1952]

Grain Boundaries Effect
› Polycrystalline structure of Cu
› MS model: Mayadas and Shatzkes

[1970]

Electrical impacts
› Electron movement will be bumpy
› Higher resistivity than bulk metal

Complicated quantum 
mechanical effect to model them

Dunn and Kaloyeros, 
(2000)
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Model of Scattering Effect

Modeling can be very complicated
λ: bulk mean free path (39nm)
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[Durkan and Welland 2000]
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A Simple Model for Scattering 
Effect

Based on the published measurement data 
from various sources, we obtain the following 
empirical resistivity model with scattering effect

( ) B

K
w

w
ρρ ρ= +

Resistivity is wire-width dependent
is an empirically fitting coefficientρK
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Simple but Capture the Essence

Infineon [Steinhoegl+ 2002]

Comparison with measurement data

0 100 200 300 400 500 600 700 800 900
2

3

4

5

IBM [Rossnagel+ 2004]

ρB=2.202 (μΩ cm)

K
ρ
=1.03  (kΩ nm2)  

 

R
es

is
tiv

ity
 [μ

Ω
 c

m
]

Wire Width [nm]

 Experimental Data
 Fitting Results

0 100 200 300 400 500

4

8

12

 

 

ρ=2.59627;
k=0.764

 Experimental Data
 Fitting Line

R
es

is
tiv

ity
 [μ

Ω
 c

m
]

Thickness [nm]



11

Confirmation from ITRS’05

Our simple model matches the newest ITRS’05 (just 
released at public.itrs.net)
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Wire Delay with Scattering

Delay of minimum-width wire
› Real delay (with scattering)

may be up to 3x of that
without scattering
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Wire Sizing is More Effective 
under Scattering

Wire sizing sensitivity
(effectiveness)
2-6x more effective
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New Wire Sizing Function
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Optimal Wire Sizing with and 
without Scattering

Previous works with fixed 
resistivity

› Either too small (bulk)
› Or too big (conservative)

An example of fixed (not 
width-dependent) resistivity

› The optimal wire size will be 
overestimated (by 10 x min 
width)

› This will cause area waste and 
routability problem

Can also be undersized…
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Delay Reduction with WS

The optimal wire sizing delay reduction increases as 
technology scales (more scattering effects)
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New Model for Wire shaping

Revisit the wire shaping problem [Fishburn’97, Chen’97]

Euler’s Differential Equation 
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Polynomial Expansions
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g3(x) is good enough
g3(x) is different from 
[Fishburn’97]
Can be used for delay 
estimation modeling
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Conclusion

Scattering effect should be considered for 
interconnect of nanoscale/mesoscale IC design

› The most recently released ITRS’05 has a lot of coverage on 
scattering effect

A semi-empirical model is developed 
› It fits the measurement data well
› Matches ITRS’05
› Suitable for interconnection optimization

Wire delay & sizing impacts are studied 
Future work:
› Variational modeling (surface roughness…)
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