

Wire Sizing with Scattering Effect for Nanoscale Interconnection

Sean X. Shi and David Z. Pan Dept. of Electrical & Computer Engineering University of Texas at Austin <u>http://www.cerc.utexas.edu/utda</u>

Introduction

- Model of Scattering Effects
- Wire Delay & Sizing with Scattering Effects
- Conclusion

Interconnect Delay Dominates

Process Technology Node (nm)

Figure 54 Delay for Metal 1 and Global Wiring versus Feature Size

(source: ITRS 2003)

What is Wire Sizing?

• WS is an effective way to reduce distributed RC delay

Rd **Continuous wire shaping** [Fishburn+, TCAD'96, DATE97; Chen+, DAC'96, DAC'97] C **Discrete wire sizing** [Cong-Leung, ICCAD'93] CL 1-width sizing (1-WS) W_{opt} [Cong-Pan, DAC'99] 2-width sizing (2-WS) W_2 [Cong-Pan, DAC'99] W_1 C I,

What is Scattering Effect?

- Mesoscopic scale effect for interconnect
- Example: surface roughness

Two Kinds of Scattering Effects

Surface Roughness Effect

- Wetting and nucleation of Cu
- FS model: [Fuchs, 1938] and [Sondheimer, 1952]
- Grain Boundaries Effect
 - Polycrystalline structure of Cu
 - MS model: Mayadas and Shatzkes [1970]
- Electrical impacts
 - > Electron movement will be bumpy
 - Higher resistivity than bulk metal
- Complicated quantum mechanical effect to model them

Dunn and Kaloyeros, (2000)

- Introduction
- A Simple Scattering Effect Model
- Wire Delay & Sizing with Scattering Effects
- Conclusion

Model of Scattering Effect

Modeling can be very complicated
λ: bulk mean free path (39nm)

$$\rho(w) = \rho_0 \cdot \left[1 + \alpha(w) + \beta(h, w)\right] \qquad R = \rho(w) \cdot \frac{l}{w \cdot t} \neq \rho_0 \cdot \frac{l}{w \cdot t}$$

$$\frac{1}{\beta(t,w)} = \frac{3}{4\pi t w} \int_{-t/2}^{t/2} dy \int_{-w/2}^{w/2} dx \int_{-\pi + \arctan(w/t)}^{\arctan(-w/t)} d\varphi \int_{0}^{\pi} \sin(\theta) \cos^{2}(\theta) \left[1 - (1-p) \frac{\exp\left(-\frac{w}{2\lambda\cos(\theta)\cos(\varphi)}\right)}{1 - p \cdot \exp\left(-\frac{w}{2\lambda\cos(\theta)\cos(\varphi)}\right)} \right] d\theta$$
$$+ \frac{3}{4\pi t w} \int_{-t/2}^{t/2} dy \int_{-w/2}^{w/2} dx \int_{\arctan(-w/t)}^{\arctan(w/t)} d\varphi \int_{0}^{\pi} \sin(\theta) \cos^{2}(\theta) \left[1 - (1-p) \frac{\exp\left(-\frac{w}{2\lambda\cos(\theta)\cos(\varphi)}\right)}{1 - p \cdot \exp\left(-\frac{w}{2\lambda\cos(\theta)\cos(\varphi)}\right)} \right] d\theta$$

[Durkan and Welland 2000]

A Simple Model for Scattering Effect

 Based on the published measurement data from various sources, we obtain the following empirical resistivity model with scattering effect

$$\rho(w) = \rho_B + \frac{K_{\rho}}{w}$$

- Resistivity is wire-width dependent
- K_{ρ} is an empirically fitting coefficient

Simple but Capture the Essence

Infineon [Steinhoegl+ 2002]

IBM [Rossnagel+ 2004]

Comparison with measurement data

Confirmation from ITRS'05

 Our simple model matches the newest ITRS'05 (just released at <u>public.itrs.net</u>)

- Introduction
- Model of Scattering Effect
- Wire Delay & Sizing with Scattering Effects
- Conclusion

Wire Delay with Scattering

Delay of minimum-width wire 3.2 Real delay (with scattering) 22nm 3.0 32nm 2.8 45nm may be up to 3x of that 65nm 2.6 90nm without scattering 1.6 T_{1-WS} 1.4 $= R_d \cdot \left[c_a \cdot l \cdot w + c_f \cdot l + C_L \right]$ 1.2 2 8 12 4 6 10 14 Wire Length [mm] $+\left[\frac{c_a \cdot l \cdot w}{2} + \frac{c_f \cdot l}{2} + C_L\right] \cdot \left[\rho_B + \frac{K_{\rho}}{w}\right] \cdot \frac{l}{w \cdot t}$

Wire Sizing is More Effective under Scattering

New Wire Sizing Function

- Delay of a single-width wire sizing
- Optimal width with width-dependent resistivity

$$T_{1-WS} = R_d \cdot \left[c_a \cdot l \cdot w + c_f \cdot l + C_L \right] + \left[\frac{c_a \cdot l \cdot w}{2} + \frac{c_f \cdot l}{2} + C_L \right] \cdot \left(\rho_B + \frac{K_\rho}{w} \right) \frac{l}{w \cdot t}$$

$$\partial T_{1-WS} / \partial w = 0$$

$$w_{Optimal} = w_1 = 2\sqrt{-\frac{a_1}{3}} \cos\left(\frac{\theta}{3}\right) \ge w_{\min}$$

where $a_1 = \frac{-\left[c_a K_\rho l + c_f \rho_B l + 2C_L \rho_B \right]}{2 \cdot R_d \cdot c_a \cdot t}, \theta = \cos^{-1} \left(\frac{K_\rho \left(c_f l + 2C_L \right) \sqrt{54R_d c_a t}}{\left(c_a K_\rho l + c_f \rho_B l + 2C_L \rho_B \right)^{3/2}} \right)$

Optimal Wire Sizing with and without Scattering

- Previous works with fixed resistivity
 - > Either too small (bulk)
 - Or too big (conservative)
- An example of fixed (not width-dependent) resistivity
 - The optimal wire size will be overestimated (by 10 x min width)
 - This will cause area waste and routability problem
- Can also be undersized...

Comparison of optimal wire sizing (normalized by min width)

Delay Reduction with WS

 The optimal wire sizing delay reduction increases as technology scales (more scattering effects)

New Model for Wire shaping

• Revisit the wire shaping problem [Fishburn'97, Chen'97]

$$T = \int_{0}^{L} R_{d} \cdot \left[c_{a} \cdot dx \cdot f(x) + c_{f} \cdot dx + C_{L} \right] + \int_{0}^{L} \left[C_{L} + \int_{0}^{x} \left(c_{a} f(l) + c_{f} \right) dl \right] \left[\frac{\rho_{B}}{f(x)} + \frac{K_{\rho}}{f^{2}(x)} \right] \frac{dx}{t}$$

$$= R_d \cdot C_L + \int_0^L F(x, u, u') \cdot dx$$

Euler's Differential Equation

if:
$$I = \int_{x_0}^{x_1} F(x, u(x), u'(x)) dx$$
 is minimized,
then: $F_u(x, u(x), u'(x)) = \frac{d}{dx} F_{u'}(x, u(x), u'(x))$

$$f(x) = u'(x) = \sum_{n=1}^{\infty} na_n \cdot x^{n-1} = a_1 + 2a_2 \cdot x + 3a_3 \cdot x^2 + 4a_4 \cdot x^3 + \cdots$$

$$a_1 = w_{\min}$$

$$a_2 = \frac{c_a \cdot a_1^2 \cdot (2\rho_B \cdot a_1 + 3K_\rho) + c_f \cdot a_1 \cdot (\rho_B \cdot a_1 + 2K_\rho)}{4 \cdot C_L \cdot (\rho_B \cdot a_1 + 3K_\rho)}$$

$$a_3 = \frac{2 \cdot a_2 \cdot [c_a \cdot a_1 \cdot (\rho_B \cdot a_1) - c_f \cdot K_\rho - C_L \cdot \rho_B \cdot a_2]}{3 \cdot C_L \cdot (3K_\rho + \rho_B \cdot a_1)}$$

$$a_4 = \frac{c_a \cdot [\rho_B \cdot (6 \cdot a_1 \cdot a_2^2 + 3 \cdot a_1^2 \cdot a_3) - 9 \cdot K_\rho \cdot a_1 \cdot a_3]}{C_L \cdot (36K_\rho + 12\rho_B \cdot a_1)}$$

$$- \frac{c_f \cdot [\rho_B \cdot (2 \cdot a_2^2 + 3 \cdot a_1 \cdot a_3) + 15 \cdot K_\rho \cdot a_3]}{C_L \cdot (36K_\rho + 12\rho_B \cdot a_1)} - \frac{C_L \cdot [18 \cdot \rho_B \cdot a_2 \cdot a_3]}{C_L \cdot (36K_\rho + 12\rho_B \cdot a_1)}$$

. . .

Wire Shape f(x) Expansion

20

$$g1(x) = a_{1};$$

$$g2(x) = a_{1} + (a_{2}x + a_{3}x^{2})/2;$$

$$g3(x) = a_{1} + a_{2}x + a_{3}x^{2} + (a_{4}x^{3} + a_{4}x^{4})/2;$$

...

$$gn(x) = \sum_{i=1}^{2n-3} a_i x^{i-1} + \frac{1}{2} \left(a_{2i-2} x^{2i-3} + a_{2i-1} x^{2i-2} \right)$$

Fig. 6 Wire shaping with different order polynomial approximation

- g₃(x) is good enough
 g₃(x) is different from [Fishburn'97]
- Can be used for delay estimation modeling

- Scattering effect should be considered for interconnect of nanoscale/mesoscale IC design
 - The most recently released ITRS'05 has a lot of coverage on scattering effect
- A semi-empirical model is developed
 - > It fits the measurement data well
 - Matches ITRS'05
 - > Suitable for interconnection optimization
- Wire delay & sizing impacts are studied

Future work:

Variational modeling (surface roughness...)