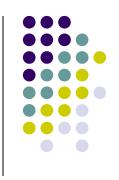

Adaptive Admittancebased Conductor Meshing for Interconnect Analysis

Ya-Chi Yang, Cheng-Kok Koh, Venkataramanan Balakrishnan Dept. of Electrical & Computer Engineering Purdue University



High-Frequency Effects

- Skin effect
 - Current density drops off exponentially from the conductor surface into the interior
- Proximity effect
 - Current crowds to the surface close to or far from nearby conductors, depending on the directions of current flow

High-Frequency Effects

- Consequences
 - Non-uniform current distribution across interconnects
 - Variations in resistance and inductance values
- Solution
 - Discretization such that the current density in each filament is approximately uniform
- Challenges
 - Large lumped circuit model is generated
 - Trade off between the model accuracy and the computational cost

Contributions

- Demonstrate the existence of a quantity that can be used to estimate the model accuracy of a given discretization
- Use this quantity to determine a discretization with the least computation and acceptable model accuracy


- Consider a single conductor carrying a signal at a single frequency
- Assume a voltage difference of 1V is applied between the two terminals

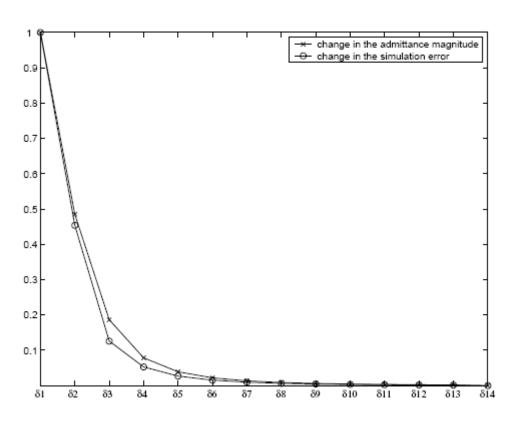
$$1 = (R_i + j\omega L_i)I_i \to I_i = (R_i + j\omega L_i)^{-1}1$$

1 : vector of ones

 I_i : vector of filament currents at discretization i

 R_i and L_i : resistance and inductance matrices at discretization i


• The total current at discretization G_i is equal to the conductor-level complex admittance Y_i

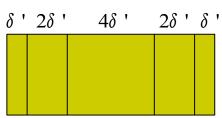

$$\mathbf{1}^{T} I_{i} = \mathbf{1}^{T} (R_{i} + j\omega L_{i})^{-1} \mathbf{1} = \mathbf{1}^{T} y_{i} \mathbf{1} = Y_{i}$$

- Characteristics of $|Y_i|$
 - Increases monotonically with increasing i
- Discretization with the higher admittance magnitude is more accurate

- Admittance error : $|Y_{\scriptscriptstyle \infty}| |Y_{\scriptscriptstyle i}|$
 - Equal to the steady-state error in the current amplitude if a unit sinusoidal voltage is applied at terminals of the conductor
 - Can be used as the stopping criterion of meshing schemes if $|Y_{\infty}|$ is available
- $|Y_{\infty}|$ is seldom available
 - Use the change in the admittance magnitude $|Y_{i+1}| |Y_i|$

- Single conductor with cross-section 3×3µm and length 1000µm
- 1V ramp with a rise-time of 10ps as the input signal
- Two quantities are compared
 - $\delta_i = |Y_{i+1}| |Y_i|$ @ 100GHz
 - $Max(|I(t) I_i(t)|)$

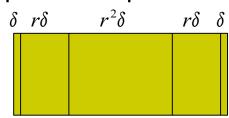
Conventional Meshing Schemes


- Uniform meshing (UM)
 - Filaments are all of the same cross-sectional area
 - Width and height of filament are no larger than the skin depth

- Exponential meshing (EM)
 - Dimensions of filaments increase exponentially from outside to inside
 - Width and height of the smallest filament are no larger than the skin depth

Conventional Meshing Schemes

- EM-1
 - Width and height of the smallest filament ≤ skin depth
 - Ratio between adjacent filaments = 2
 - Number of filaments is determined automatically

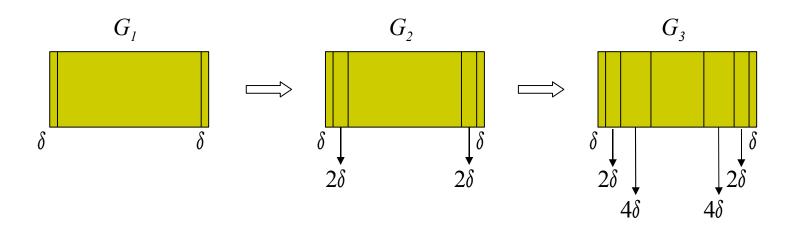


$$\delta' = \frac{W}{2(1+2)+2^2} \le \delta$$

W: width of conductor

 δ : skin depth

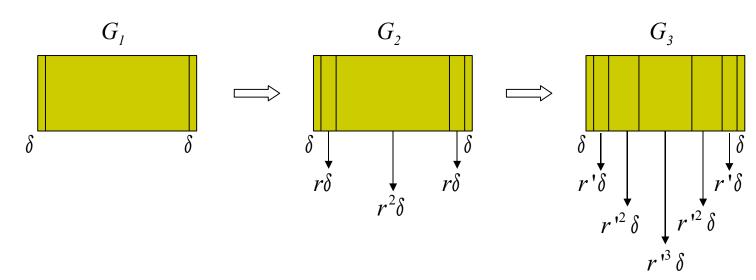
- EM-2
 - Width and height of the smallest filament = skin depth
 - Ratio between adjacent filaments is varying
 - Number of filaments is specified a priori


$$W = 2\delta \left(\frac{r^{(N-1)/2} - 1}{r - 1} \right) + \delta r^{(N-1)/2}$$

N: given number of filaments r: ratio of adjacent filaments

Adaptive Exponential Meshing Schemes (AEM)

- AEM-1
 - Width and height of the smallest filament = skin depth
 - Ratio between adjacent filaments = 2
 - Add filaments until the admittance magnitude does not increase appreciably or when there is no room for adding filaments

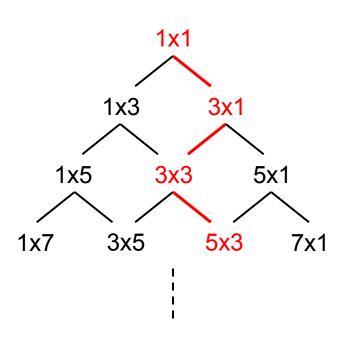


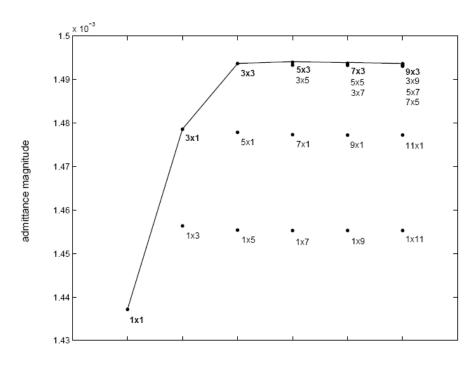
Adaptive Exponential Meshing Schemes (AEM)

- AEM-2
 - Width and height of the smallest filament = skin depth
 - Increase the number of filaments with the ratio between adjacent filaments satisfying the equation

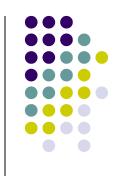
$$W = 2\delta \left(\frac{r^{(N-1)/2} - 1}{r - 1} \right) + \delta r^{(N-1)/2}$$

Implementations of Adaptive Meshing Schemes

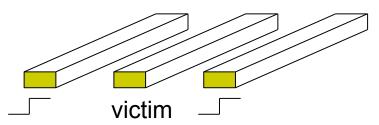



- Given a discretization that needs refinement
 - 1. For two candidate discretizations (two more filaments along the width and height), compute the admittance magnitude at the working frequency
 - Choose the discretization that yields a higher admittance magnitude
 - 3. Repeat step 1 and 2 until the change in the admittance magnitude for two successive discretizations is below a suitable threshold

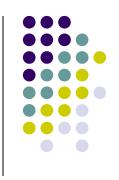
Implementations of Adaptive Meshing Schemes



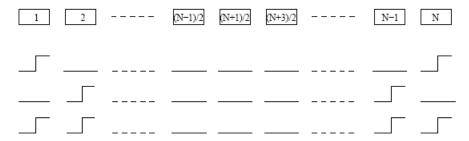
- Example
 - Single conductor of length 1000µm with cross section 10µm×3µm
 - "N×M" mesh: N and M filaments along the width and height, respectively



Non-Effect of Proximity

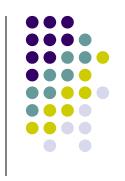


- Skin effect dominates the proximity effect
 - Interaction of filaments within a conductor overwhelms any effect from the filaments in any other conductors
 - Example Three conductors are all of length 1000μm and cross section 10μm×3μm



	spacing (µm)									
Mesh	0.1		0.5		1.0		1.5		2.0	
size	$ Y (\times 10^{-2})$	error								
5 × 3	2.5094	0.9793%	1.5437	0.8933%	1.1063	0.8442%	0.8973	0.8155%	0.7724	0.8188%
7 × 3	2.5166	0.8609%	1.5465	0.7788%	1.1078	0.7296%	0.8984	0.6995%	0.7732	0.8188%
5 × 5	2.5077	0.9375%	1.5421	0.8622%	1.1050	0.8196%	0.8962	0.7946%	0.7715	0.8188%
9 × 3	2.5176	0.8143%	1.5470	0.7425%	1.1082	0.6992%	0.8987	0.6720%	0.7734	0.8188%
7 × 5	2.5135	0.9400%	1.5440	0.8639%	1.1060	0.8209%	0.8970	0.7957%	0.7720	0.8188%

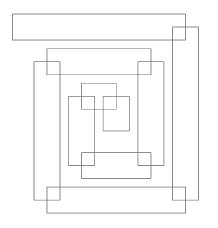
Experimental Results



- Simulation of wires with uniform cross-section
 - N parallel conductors, each with a cross-section of 5x1µm, length of 1000µm and inter-conductor spacing of 1um
 - Ramp signals with a rise-time of 10ps as aggressor inputs

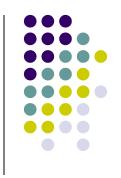
number	discretization										
of	of EM-1		EM-2		AEM-1		AEM-2				
conductors	8 × 4		8 × 4		5 × 3		5 × 3				
N	error	runtime	error	runtime	error	runtime	error	runtime			
5	0.1492%	1.00	0.1101%	1.07	0.5936%	0.67	0.5346%	0.67			
7	0.1571%	1.00	0.1160%	1.07	0.6835%	0.58	0.5742%	0.60			
9	0.1581%	1.00	0.1183%	1.03	0.7202%	0.44	0.5841%	0.44			
11	0.1576%	1.00	0.1184%	1.01	0.8279%	0.29	0.5865%	0.29			
13	0.1635%	1.00	0.1231%	0.97	1.0085%	0.35	0.5993%	0.35			


Experimental Results


- Simulation of wires with non-uniform crosssections
 - Consider the cases of five parallel conductors and seven parallel conductors
 - Length = 1000μm, height = 3μm
 - Widths of each conductor are randomly chosen from the set {3µm, 5µm, 7µm}

number of conductors	er of conductors EN		I-1 EM-2		AEM-1		AEM-2	
N	error	runtime	error	runtime	error	runtime	error	runtime
5	0.2121%	1.00	0.1263%	1.04	0.5682%	0.42	0.8481%	0.44
7	0.2133%	1.00	0.1311%	1.07	0.5521%	0.14	0.7421%	0.14

Experimental Results



- Extraction of frequency-dependent inductance
 - Spiral inductor composed of segments with a uniform crosssection of 3µm×1µm and the longest segment of 20µm long
 - Separation between any adjacent parallel segments is 1µm
 - Use FastHenry to extract the frequency-dependent inductance
 - Frequency points is taken from the 10GHz ~ 100GHz range

meshing scheme	EM-1	EM-2	AEM-1	AEM-2
error	0.0913%	0.0885%	0.6063%	0.1726%
runtime(second)	12.60	12.33	4.01	7.60
speedup	1.00	1.02	3.14	1.66

Conclusion

- Conductor-level admittance magnitude can be used to predict simulation errors due to discretizations
- Observations can be applied to determine the coarsest discretization with an acceptable model accuracy by the admittance magnitude
- Significant savings in computation can be realized with little sacrifice in accuracy