PowerViP: SoC Power Estimation Framework at Transaction Level

Jan. 26, 2006

Ikhwan Lee et. al.
Corporate Computer-Aided Engineering
Semiconductor Business
Samsung Electronics Co., Ltd.

- Introduction
- Component Power Modeling
 - ARM926EJS processor
 - AMBA AXI bus fabrics
 - Custom IP blocks
- PowerViP
- Concluding Remarks

- Introduction
- Component Power Modeling
 - ARM926EJS processor
 - AMBA AXI bus fabrics
 - Custom IP blocks
- PowerViP
- Concluding Remarks

Low Power Design Solutions

System/ Circuit/ Software Logic Device Architecture Physical HW / SW **Power** Path Multi-Vth **Dual Gate Partitioning Balancing Management Dynamic Memory Gate Sizing VTCMOS** FinFET / 3D Volt. Scaling **Optimization** Instruction-**Adaptive** Voltage **Clock Gating** SOI Volt. Scaling level Opt. Island **Control-Data Technology Parallelism Power gating Multi-Tox** Transform. **Mapping** "You can't manage it until you can estimate it!" Power **Power** Power Power Power **Estimation Estimation Estimation Estimation Estimation**

Why System Level Power Estimation?

- Advantages
 - Larger opportunities for power reduction
 - x10~x20 as compared to logic level
 - Faster estimation
 - Enables thorough design space exploration
 - Power profile given in the system context
 - Prevents from falling into a local optimum

The Requirements and Problems

- Requirements
 - System level simulation platform
 - ViP (Virtual Platform)
 - Power models of system components
- Problems
 - Diversity of components (power characteristics)
 - Trade-off among the below three factors
 - Simulation speed → to maximize
 - Estimation accuracy → to maximize
 - Modeling effort → to minimize

Observation in a mobile SoC family

Continuously evolving IPs

• Video IP (MPEG4, H.264)

Frequently reused IPs

- Processor: ARM, StarCore
- Bus: AXI, AHB
- Off-chip memory: DDR, Flash
- Memory controller
- Peripheral: GPIO, USB
- Image filters

Platform-based design enables maximum reusability

3rd party IPs

• 3D graphics

Model once, reuse many times

Our Contributions

- Identification of IP classes
- Power models for major SoC components
 - Speed
 - Accuracy
 - Modeling effort
- Provide cycle-accurate power profile in the system context

- Introduction
- Component Power Modeling
 - ARM926EJS processor
 - AMBA AXI bus fabrics
 - Custom IP blocks
- PowerViP
- Concluding Remarks

- Introduction
- Component Power Modeling
 - ARM926EJS processor
 - AMBA AXI bus fabrics
 - Custom IP blocks
- PowerViP
- Concluding Remarks

ARM926EJS Power Profile

■ Simple mW/MHz model does not reflect power phase transitions during the course of a program execution

Defining Power States (1)

- Separate core and cache power states
 - Cache size needs to be configurable
 - Cache power shows large variation (3~60% of total power)
- Core power states

Defining Power States (2)

- Cache power states
 - Activity based coarse-grained power model
 - Differentiates non-sequential, sequential, and fill buffer accesses

Power Annotation

- Core states are visible in the ARM926EJS ISS (instruction set simulator)
- Cache states need to be inferred from transaction level activities

Estimation Accuracy vs. Gate-level

■ Average estimation accuracy (< 93%)

dhrystone	cav_detect	adpcm	FFT	h264 enc
97.1%	97.3%	98.2%	96.6%	93.1%

Cycle-by-cycle power profile

- Introduction
- Component Power Modeling
 - ARM926EJS processor
 - AMBA AXI bus fabrics
 - Custom IP blocks
- PowerViP
- Concluding Remarks

PL300 AXI Interconnect

■ Full crossbar architecture

■ Power characterization when only one master and one slave are active

Component-based Power Model: PL300

- Characterize each component
 - For each basic state, find out which component is active and how much power it consumes
- Compose the basic model
 - For each cycle, add the power consumption of all active components
- Linear regression model
 - Consider the coupling effect

Linear Regression Model

Each AXI sub-component has its own linear regression model.

$$E_{total} = E_{est} + n_{-}AR * E_{br_RD} + n_{-}AW * E_{br_WT} + \frac{n_{-}RD * E_{cyc_RD} + n_{-}WT * E_{cyc_WT}}{n_{-}RD + n_{-}WT}$$

$$E_{est} = a_1 E_{comp} + a_0$$

$$a_1 = \frac{n_RD * a_1__{RD} + n_WT * a_1__{WT}}{n_RD + n_WT}$$

$$a_0 = \frac{n_RD * a_0__{RD} + n_WT * a_0__{WT}}{n_RD + n_WT}$$

Coupling effects

Perspective of our bus power TLM

Estimation Accuracy vs. Gate-level

		# master	# slave	ID width	data width
	conf. 1	4	4	0	32
	conf. 2	4	4	4	32
	conf. 3	6	2	4	32
	conf. 4	7	3	5	64

Max < ~10% estimation error

- Introduction
- Component Power Modeling
 - ARM926EJS processor
 - AMBA AXI bus fabrics
 - Custom IP blocks
- PowerViP
- Concluding Remarks

ViP Model Generation and Simulation

RTL Power Estimation & Characterization

Process-specific libraries (130G, 90LP, etc.)

Power-representative FSM must be manually extracted from the RTL design

Power Modeling of Custom IP Blocks

- Introduction
- Component Power Modeling
 - ARM926EJS processor
 - AMBA AXI bus fabrics
 - Custom IP blocks
- PowerViP
- Concluding Remarks

Integration of Component Power Models

Application of PowerViP

- Peak power analysis
 - We can find realistic test patterns to avoid "over-design" of power grid
- Low power bus architecture exploration
- Early development of power management software
- Software code optimization for low power

- Introduction
- Component Power Modeling
 - ARM926EJS processor
 - AMBA AXI bus fabrics
 - Custom IP blocks
- PowerViP
- Concluding Remarks

Concluding Remarks

- Development of component power models
 - 93% accuracy for ARM926EJS
 - 95% accuracy for AXI bus
 - 80% target-accuracy for custom IP blocks
- Integration into single simulation platform
- Cycle-accurate power profile of each component is shown
- PowerViP can be used in variety of application