Switching Activity Driven Gate Sizing and Vth Assignment for Low Power Design Yu-Hui Huang **Po-Yuan Chen** TingTing Hwang

> National Tsing Hua University Taiwan

- Introduction and Motivation
- Related Work
- Algorithm
- Experimental Result
- Conclusion

Introduction

- Power = Active Power +
 - (1) Idle Power
- Active Power
 - Dynamic power
 - Gate sizing
 - Leakage power
 - Vth Re-assignment
- Idle Power
 - Leakage power
- Minimize total power

Motivation

- To enhance the performance of a circuit, we can size-up gates or replace the Vth of gates from high to low.
 - Size-up :

increase dynamic power and small leakage power

- Replace the Vth of cells from high to low : Increase leakage power
- Which one is better?
 - Depends on the switching activity of a gate.

Motivation

	Inverter A	Inverter B
Vth	_	lower
Size	larger	_

- Inverter A and B have same delay and output loading
- Comparison function

dyn(A) - dyn(B)

lea(B) - lea(A)

Motivation

Switching Activity

- Gate Sizing
- Vth re-assignment

Switching	Ratio (%)						
activity ()	TOP	MAC	AVG	GCC	RSA	AES	Average
0 % < <22%	71.0	48.9	70.9	55.3	84.5	60.8	65.3
22 % <	29.0	51.1	29.1	44.7	15.5	39.2	34.7

- Introduction and Motivation
- Related Work
- Algorithm
- Experimental Results
- Conclusions

Related Work

- Previous work focused on minimizing power on non-critical path.
- We can minimize power both on critical path and non-critical path.
 - On critical path:
 - We can re-assign Vth to high and up-size gates which has small switching activity.
 - On non-critical path:
 - Slack can be used to down-size gate or assign Vth to high.

- Introduction and Motivation
- Related Work
- Algorithm
- Experimental Result
- Conclusion

Algorithm –Design Flow

Algorithm for Critical Path (Step 3.1)

Step 3.1: Constructing Path Balanced Graph

- Path-Balanced Graph
 - Yutaka Tamiya, "Performance Optimization Using Separator Sets", ICCAD 1999

 $ds(e) = slack(head _ node(e)) - slack(tail _ node(e))$

Step 3.1: Computing Cost

Set cost of each node

 $cost(g) = \gamma * penalty(g) +$

 $\delta * delay_reduction(g)$

penalty(g) = $\alpha * p_penalty(g) + \beta * a_penalty(g)$

 $p_penalty(g) = per * ($ Active mode $\sum_{j \in fanin(g)} E(j) * C_{inc}(g) * V^2$ $+ leak_{inc}(g))$ Idle mode $+ (1 - per) * leak_{inc}(g)$ E(j) is the transition density of node j

Step 3.1: Finding Separator Set

 Find separator set of minimal cost in the graph
Delay improvement min{0.7,0.5} = 0.5

(x,y,z) means (slack ,delay-reduction ,cost)

Step 3.1: Finding Separator Set

 Find separator set of minimal cost in the graph

Step 3.2: Computing Penalty

delay-penalty(g) = Delay(new_g) – Delay(g)

p_saving(g) = p_penalty(g) - p_penalty(new_g)

Step 3.2: Replacing Cell

down-sizing or re-assigning Vth to high

 If only one delay penalty of two options is less than available slack ?

- choose the available one
- If delay penalties of both options are less than available slack ?

depends on the larger power saving

- Introduction and Motivation
- Related Work
- Algorithm
- Experimental Result
- Conclusion

Benchmarks

Cir.	Cell Count	Characteristics
ТОР	463	An Alarm Clock
MAC	2425	Multiplier and Accumulator
AVG	6361	Average Number Calculator
GCC	8204	Gravity Center Calculator
RSA	14815	Asymmetric Crypto- Processor
AES	16824	Advanced Encryption Core

• TOOLS

- DesignCompiler
- TSMC 0.13um library
- PrimeTime
- PrimePower

Power saving

is the fraction of active time

Circuit	= 100%		=	50%	= 10%	
	<i>P</i> (mW)	Red	<i>P</i> (mW)	Red	<i>P</i> (mW)	Red
ТОР	0.363	11.95%	0.179	14.24%	0.0371	19.12%
MAC	0.790	18.56%	0.397	21.09%	0.0837	35.97%
AVG	1.65	5.75%	0.835	8.79%	0.211	14.84%
GCC	0.753	6.48%	0.412	8.69%	0.142	15.46%
RSA	2.12	39.20%	1.08	41.40%	0.239	53.50%
AES	13.4	15.60%	6.70	16.99%	1.41	21.33%
Average		16.26%		18.53%		26.70%

Time Penalty

is the fraction of active time

Circuit	Original T	= 100%		= 50%		= 10%	
		Τ'	T penalty	Τ'	T penalty	Τ'	T penalty
ТОР	1.43	1.37	-4.2%	1.39	-2.8%	1.40	-2.1%
MAC	3.30	3.33	0.8%	3.33	0.8%	3.33	0.8%
AVG	23.78	23.13	-2.7%	23.46	-1.3%	23.54	-1.0%
GCC	26.30	26.65	1.3%	26.73	1.6%	26.34	0.2%
RSA	10.00	10.08	0.8%	10.03	0.3%	10.10	1.0%
AES	2.29	2.21	-3.5%	2.27	-0.9%	2.27	-0.9%

- Introduction and Motivation
- Related Work
- Algorithm
- Experimental Result
- Conclusion

Conclusion

- Switching activity of a gate plays an important role in making decision to choose gate sizing or Vth assignment.
- Under the timing constraint, our circuit have 16% and 18% improvement as compared to the original circuits where the fraction of active time are 100% and 50%, respectively.

Thank you