Switching Activity Driven Gate Sizing and Vth Assignment for Low Power Design

Yu-Hui Huang
Po-Yuan Chen
TingTing Hwang
National Tsing Hua University Taiwan

Outline

- Introduction and Motivation
- Related Work
- Algorithm
- Experimental Result
- Conclusion

Introduction

- Power = a • Active Power + (1-a) •Idle Power
- Active Power
- Dynamic power
- Gate sizing
- Leakage power
- Vth Re-assignment
- Idle Power
- Leakage power
- Minimize total power

Motivation

- To enhance the performance of a circuit, we can size-up gates or replace the Vth of gates from high to low.
- Size-up :
increase dynamic power and small leakage power
- Replace the Vth of cells from high to low : Increase leakage power
- Which one is better?
- Depends on the switching activity of a gate.

Motivation

	Inverter A	Inverter B
Vth	-	Iower
Size	Iarger	-

$$
\begin{gathered}
\operatorname{dyn}(A)-\operatorname{dyn}(B) \\
\operatorname{lea}(B)-\operatorname{lea}(A)
\end{gathered}
$$

Motivation

- Switching Activity
- Gate Sizing
- Vth re-assignment

Switching activity (a)	Ratio (\%)							
	TOP	MAC	AVG	GCC	RSA	AES	Average	
$0 \%<\mathbf{\alpha}<22 \%$	71.0	48.9	70.9	55.3	84.5	60.8	65.3	
$22 \%<\mathbf{a}$	29.0	51.1	29.1	44.7	15.5	39.2	34.7	

Outline

- Introduction and Motivation
- Related Work
- Algorithm
- Experimental Results
- Conclusions

Related Work

- Previous work focused on minimizing power on non-critical path.
- We can minimize power both on critical path and non-critical path.
- On critical path:

We can re-assign Vth to high and up-size gates which has small switching activity.

- On non-critical path:

Slack can be used to down-size gate or assign Vth to high.

Outline

- Introduction and Motivation
- Related Work
- Algorithm
- Experimental Result
- Conclusion

Algorithm -Design Flow

Circuit \& Timing Constraint

Library of cells with low Vth

Library of cells with high Vth

Step2.Swap cells from low Vth to high Vth

Step3.Gate sizing and Vth re-assignment

Output Circuit

Algorithm -Step 3

Step3.2
For Non Critical Path

Minimize the power on non-critical paths by slack

Algorithm for Critical Path (Step 3.1)

Step 3.1: Constructing Path Balanced Graph

- Path-Balanced Graph
- Yutaka Tamiya, "Performance Optimization Using Separator Sets", ICCAD 1999

$$
\operatorname{ds}(\mathrm{e})=\operatorname{slack}(\text { head _node }(\mathrm{e}))-\operatorname{slack}(\text { tail _ node }(\mathrm{e}))
$$

Step 3.1: Computing Cost

- Set cost of each node

$$
\begin{aligned}
\operatorname{cost}(\mathrm{g})= & \gamma * \text { penalty }(\mathrm{g})+ \\
& \delta * \text { delay_reduction }(\mathrm{g})
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{penalty}(\mathrm{g})= & \alpha * \mathrm{p} _ \text {penalty }(\mathrm{g})+ \\
& \beta * \text { a_penalty }(\mathrm{g})
\end{aligned}
$$

p_penalty $(\mathrm{g})=$	per $*($ Active mode
$\sum_{\mathrm{j} \text { fanin(} \mathrm{g})} \mathrm{E}(\mathrm{j}) * \mathrm{C}_{\text {inc }}(\mathrm{g}) * \mathrm{~V}^{2}$ $\left.+\operatorname{leak}_{\text {inc }}(\mathrm{g})\right)$	
Idle mode	$+(1-$ per $) *$ leak $_{\text {inc }}(\mathrm{g})$

$E(j)$ is the transition density of node j

Step 3.1: Finding Separator Set

- Find separator set of minimal cost in the graph

($\mathrm{x}, \mathrm{y}, \mathrm{z}$) means (slack ,delay-reduction ,cost)

Step 3．1：Finding Separator Set

－Find separator set of minimal cost in the graph
।－－－－－－－－－－－－－－－－－－－－ר
IDelay improvement $\min \{0.5,0.25\}=0.25$ I
レーーーーーーーーーラーーーーーーーーーー」

（0．15／0．25／0）
（ $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ）means（slack ，delay－reduction ，cost）

Algorithm for Non Critical

 PathStep3. 1
For Critical Path

| Construct |
| :---: | :---: |
| path |
| balanced |
| graph |\quad| Compute minimal |
| :---: |
| cost separator
 sets of the path
 balanced graph |

Replace the nodes in the separator sets

Step3.2
For Non Critical Path
Minimize the power on non-critical paths by slack

Algorithm for Non Critical Path

Compute available slack

Compute delay penalty caused by
down-sizing or
re- assigning Vth to high

Compute power saving caused by
down-sizing or re-assigning Vth to high
down-sizing or re-assigning high Vth

(0.6/0.4/0)

(x, y, z) means (slack, delay-reduction ,cost)

Step 3.2: Computing Penalty

Compute delay penalty caused by down-sizing or

Compute power saving caused by
down-sizing or re-assigning Vth to high down-sizing or re-assigning Vth to high
delay-penalty $(g)=\operatorname{Delay}\left(n e w _g\right)-\operatorname{Delay}(g)$
$p_{-} \operatorname{saving}(g)=p _p e n a l t y(g)-p _p e n a l t y\left(n e w _g\right)$

Step 3.2: Replacing Cell

- If only one delay penalty of two options is less than available slack ?
\Rightarrow choose the available one
- If delay penalties of both options are less than available slack ?
\rightarrow depends on the larger power saving

Outline

- Introduction and Motivation
- Related Work
- Algorithm
- Experimental Result
- Conclusion

Experimental Result

- Benchmarks

Cir.	Cell Count	Characteristics
TOP	463	An Alarm Clock
MAC	2425	Multiplier and Accumulator
AVG	6361	Average Number Calculator
GCC	8204	Gravity Center Calculator
RSA	14815	Asymmetric Crypto- Processor
AES	16824	Advanced Encryption Core

Experimental Result

 -TOOLS- DesignCompiler
- TSMC 0.13 um library
- PrimeTime
- PrimePower

Experimental Result

- Power saving
a is the fraction of active time

Circuit	$\alpha=100 \%$		$\alpha=50 \%$		$\alpha=10 \%$	
	$P(\mathrm{~mW})$	$R e d$	$P(\mathrm{~mW})$	$R e d$	$P(\mathrm{~mW})$	$R e d$
TOP	0.363	11.95%	0.179	14.24%	0.0371	19.12%
MAC	0.790	18.56%	0.397	21.09%	0.0837	35.97%
AVG	1.65	5.75%	0.835	8.79%	0.211	14.84%
GCC	0.753	6.48%	0.412	8.69%	0.142	15.46%
RSA	2.12	39.20%	1.08	41.40%	0.239	53.50%
AES	13.4	15.60%	6.70	16.99%	1.41	21.33%
Average		16.26%		18.53%		26.70%

Experimental Result

- Time Penalty
a is the fraction of active time

Circuit	OriginalT	a = 100\%		$\alpha=50 \%$		a = 10\%	
		T'	T penalty	T'	T penalty	T'	T penalty
TOP	1.43	1.37	-4.2\%	1.39	-2.8\%	1.40	-2.1\%
MAC	3.30	3.33	0.8\%	3.33	0.8\%	3.33	0.8\%
AVG	23.78	23.13	-2.7\%	23.46	-1.3\%	23.54	-1.0\%
GCC	26.30	26.65	1.3\%	26.73	1.6\%	26.34	0.2\%
RSA	10.00	10.08	0.8\%	10.03	0.3\%	10.10	1.0\%
AES	2.29	2.21	-3.5\%	2.27	-0.9\%	2.27	-0.9\%

Outline

- Introduction and Motivation
- Related Work
- Algorithm
- Experimental Result
- Conclusion

Conclusion

- Switching activity of a gate plays an important role in making decision to choose gate sizing or Vth assignment.
- Under the timing constraint, our circuit have 16% and 18% improvement as compared to the original circuits where the fraction of active time are 100% and 50%, respectively.

Thank you

