Power driven placement with layout aware supply voltage assignment for voltage island generation in dual-Vdd designs

> Bin Liu, Yici Cai, Qiang Zhou, Xianlong Hong Tsinghua University

> > January 26, 2006

Outline

- Introduction and related works
- Motivation
- Our flow
- Implementation
- Results
- Conclusion

Introduction

Lowering supply voltage to save energy

- Dynamic power
- Static power
- Low voltage causes slowdown of devices.
- Multiple supply voltages
 - High voltage on critical paths
 - Low voltage on other paths

Multiple Supply Voltages

- Macro block level
 - Design planning
 - J. Hu et al., ISLPED'04
- Cell level (our focus)
 - Different cells have different voltages.
 - More flexible

New Challenges

- Level converter
 - VddL cells can't drive VddH cells directly.
- Layout
 - Power delivery networks become complicated.
 - Cells under the same voltage should be clustered.

Related works: voltage assignment

- Works on the netlist, based on STA.
- Substituting VddH cells with VddL cells.
- Clustered voltage scaling (CVS)
 - K. Usami and M. Horowitz, ISLPED'05
- ECVS
 - C. Chen et al., TVLSI'01
 - S.H. Kulkarni et al., ISLPED'04

Related works: cell placement

Row based dual Vdd placement

C. Yeh et al., DAC'99

Related works: cell placement

Region based – voltage island

Motivation

- Voltage assignment is usually performed before cell placement.
 - Hard to estimate interconnect delay.
 - Large wire length penalty caused by clustering in placement.

Motivation

- Solution
 - Layout aware voltage assignment.
 - Voltage island generation during placement.
- Similar approaches
 - DAC'03, R. Puri, D. Pan, et al.
 - Prof. Patrick Madden
- Goal
 - Reduce power under timing constraints
 - Implement fine-grained voltage islands with small overheads

Our flow

- Pre-layout voltage assignment is not required.
- Assign supply voltages according to a placement result.
- Iterations between voltage assignment and placement refinement.

Partition based placement

- Our placement algorithm is based on Capo 9.2.
- Partition based placer
 - Recursively partition every bin, and associated netlist (hypergraph).
 - Minimize wirelength -> minimize cut number.
 - Multilevel hypergraph partition.

Initial coarse placement

- The first several passes of global placement.
- All cells are assumed to operate under VddH.
- Timing and power driven net weighting
 - Static timing analysis
 - Consider signal activity (switching probability)

$$W = \begin{cases} (1 + c \times \alpha) \times \left(1 + \frac{T_0}{T_0 / N + slack} \right), & slack > 0\\ (1 + c \times \alpha) \times (1 + N), & else \end{cases}$$

Initial voltage assignment

- Goal
 - Most VddL cells are physically clustered.
- Seed growth manner
 - First select some seed bins, so that most cells in seed bins are VddL cells. (physical adjacency)
 - Assign VddL to some other cells if possible. (logical adjacency)

Initial voltage assignment

- Select seed bins
 - Calculate the tendency of using VddL for every cell. tendency = $\begin{cases} \frac{\left(G_{self} + \gamma G_{LC}\right) \times slack}{\Delta delay}, \quad slack > \Delta delay \end{cases}$

- Bins where average cell tendency above a threshold is selected as VddL seed bins.
- Tendency values should be updated after cells in a seed bin is assigned to VddL.

Initial voltage assignment

Growth

- Focus on logical expansion of VddL cells.
- Visit VddH cells in decreasing order of tendency.
- Since the gain on level converter is considered in tendency calculation, VddH cells connecting to VddL cells are more likely to be assigned to VddL.

Placement refinement

- Goal
 - Locally adjust cell locations in order to cluster cells with the same supply voltage.
 - Consider the change in path delay.
- Implementation
 - Merge adjacent bins, and repartition the netlist, considering clustering requirement.
 - Net re-weighting after voltage assignment.
 - Add pseudo edges to pull cells closer.

Incremental voltage assignment

Goal

- Form VddH or VddL islands
- Implementation
 - For bins where the portion of VddH cells is larger than a threshold, use VddH for all cells.
 - For bins where most cells are VddL cells, try to use VddL for all cells.
 - If a bin still contain VddH and VddL cells after many iterations, use VddH for this bin.

Benchmarks

- ISCAS 85, 89 benchmarks
- VddH = 1.8V, VddL = 1.2 V
- We compare 3 algorithms
 - Capo 9.2 with default parameters
 - Capo 9.2 with our net weighting
 - Proposed algorithm

Conclusion

- Our method is effective to implement voltage island without significant wirelength increase.
- Further work can explicitly consider level converter insertion during this flow.

Thank you.