ASP-DAC 2006
26. Jan. 2006

Reusable Component IP Design

ng Refinement-based Design Environment

Sanggyu Park
Seoul National University

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Introduction

m Standard Interface-based Hardware Components
Required for Reuse-centric Design Methodology
Easy hardware integration
Drawbacks
m Too many architectural decisions in component
s Complex design and verification
m A new component IP design methodology
Efficient component IP design & verification
More flexible communication

m Refinement-based design concept for component IP
design

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Outline

Introduction

m Drawbacks of Standard-Interface-based Component IP
m CATtree-based Design Methodology

m Component IP Design Flow

m Case study: H.264 Decoder VLD Component Design

m Conclusion

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Reuse-Centric Design Approach

IP Provider Platform Provider

. Design a derivative system
re-using pre-described
. IPs and Platforms .

IP Providers, Platform Providers . _ _
and System Designers are Interface standardization

different people or groups .

System Design House

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Drawback of Standard Interface [1]

m A standard interface-based HW component contains
many communication architectural decisions that limits
system level design space

Component A Component B
Bus
Bus
|:A = Buffer = Master Slave ™ Buffer =» FB
‘ Interface Interface
On-chip
RSRAM Architectural Details
Controller
1. Micro-architecture of F, and Fg
2. F, communicates with F; with ‘AHB’ bus
3. F,is abus master, Fg is a bus slave
On-chip 4. There are two buffers of specific depths
SSRAM 5. F, uses an on-chip SSRAM

Limits reusability or system architecture

ASP-DAC 2006

Reusable Component IP Design using Refinement-based Design Environment

Drawback of Standard Interface [2]

m Standard interface-based HW has many sub-functions

A component contains many sub-functions that controls
standard interfaces

Component A

Bus

'

On-chip
SSRAM
Controller

On-chip
SSRAM

Interface

Many Sub-functions

*F, and Fg

» Buffer

* Bus master interface

* Bus slave interfacé

* On-chip SSRAM controller

Component B

Bus

Interface

Many sub-functions

v

High Complexity of
Design & Verification

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Drawback of Standard Interface [3]

m A standard interfaces such as on-chip buses, defines
complex protocols to be a generic interface
AHB: Error, Split, Retry, Arbitration, etc

m A component should support all defined protocols

In a system, some protocols are not needed
=» Unnecessary overhead and complexity

m Design and verification of fully compliant component
> very, very, very difficult

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Problem Summary

Archifeotufal@éuigions

1. Micro-architecture of F,, Fg
2. F, communicates with F; with ‘AHB’ bus
3. F,is abus master, Fg is a bus slave
5. F, uses an on-chip SSRAM
Design Complexity (# of sub-functions) Verification Complexity
1. sub-components F,, Fg
2. Buffer
3. Bus master interface 2. Bus master interface
4. Bus slave interface 3. Bus slave interface
5. On-chip SSRAM controller

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Proposed Solution

m Applying the design orthogonalisation concept to the
component IP design flow

Capture a computation with abstract interfaces
Computation _
Q: What are computations and what are not?

Computation Refine communication architecture
according to the system architecture

Q: What are communication architectures?

Communication

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

What are commmunications?

m \What are communication functions ?
A data transfer? buses? FIFO ?
Or functions which are not computations?

m \What are communication architectures?
A bus system? Switched network? NoC?
HW or SW implemented FIFO?
Memories?

m Clear guides to function capture and architecture refinement
are needed

10

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

CATtree

m Communication Architecture Template Tree (CATtree)

A collection of information that covers a specific range of
communication function and its architectures

Channel: a function model of a CATtree (in SystemC)
Interface: defines a set of functions the channel provides
m TLM I/F in SystemC, RTL I/F in HDL, SW I/F in SystemC

Abstraction adapters
m TLM-to-RTL and RTL-to-TLM abstraction adapters
Architecture Templates

m parameterized implementation of architectures that are used for channel
refinement

s TLM templates in SystemC, RTL templates in HDL, SW templates in C

11

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

FIFO CATtree

FIFO read interface FIFO write interface
FIFO

Array-Wired FIFO Adapter

® OwWec-0 W ® o ¢ W
Bus-Wired FIFO g g
Architecture

Array

Memory-wired FIFO
Architecture

Master-Write Master-Read
Bus-wired FIFO Bus-wired FIFO

12

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Array CATtree

Array read interface Array write interface
Array AW
SSRAM Controller SDRAM Controller
@ 099 & @ cane ® @ B @ &
$e oo 0 0

Array Array SSRAM SDRAM

Bus-Wired Array Cached Array On-chip External
Architecture Architecture SSRAM Array SDRAM Array
Architecture Architecture

13

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Complex Architecture Refinement

R) FIFO W
@ Array-Wired FIFO Adapter
A complex FIFO Architecture that ® O
contains array cache, SSRAM controller @ @ Memory-wired FIFO
and SSRAM @ @ Architecture
Array-Wired FIFO Adapter Array
% % @ Array-Wired FIFO Adapter
Cache ® @
o :
SSRAM Controller (‘:Qgche
- A -J A
On-chip ? ? @ Cached Array

SSRAM

(o) @ @ Architecture
Array

14

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

CATtree Library

m CATtree Library
A set of CATtrees
Clearly shows what are communication functions & architectures
Currently, we developed 14 CATtrees

CATtree FIFO Array Variable
Library Event Handshaking Shared Bus

Shared Event = Block-read FIFO Block-write FIFO

Multi-read FIFO | pMulti-write EIEO 2D/3D Array

TLM M

RTL

15

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

CATtree-based HW Component Design

» Describe computation TLM (SystemC)
Function « Describe testbench computation TLM (SystemC)
Capture * Integrate computations with CATtree channels

!

: * Describe computation RTL in HDL Role of
Computation - Insert abstraction adapters Component
RTL Description - Verify the computation RTL Designer

T

* Verify & Validate the computation function

o - Refine the communication part of the ‘
Communication computation to be best-fit to the Role of
Refinement target system architecture System
» Using CATtree architecture templates Designer

16

Reusable Component IP Design using Refinement-based Design Environment

ASP-DAC 2006

Standard |I/F-based v.s. CATtree based

CATtree-based Component

Standard I/F-based Component

Bus
|:A " Master
Interface
v v
On-chip @ @
Array

SSRAM
Controller

Many architectural decisions. : Hints for comm. refinement

On-chip
SSRAM Many sub-components to be
designed and verified

Only computation should be
designed and verified.

Simple protocols only.Complex
protocols are handled by channels

17

Complex protocols and
difficult compliance test

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Case Study: H.264 Design

—0—0-
: Cacnu(I:ato; +: Configured
We designed one ® (\Z/Ic;z Communication parts
H.264 VLD Computation] de'\ciﬁ;er%’] for two different
H.264 VLD Computation system architecture
Low-End Application High-End Application
* QCIF 15 frame per second « HDV 30 frame per second
* No Flexible Macroblock Ordering * Flexible Macroblock Ordering
« Communication backbone: AHB Bus « Communication backbone: AHB Bus

18

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

H.264 VLD TLM Design

m A VLD and 4 Testbench computations in TLM
VLD contains sub-functions: VLD core, nC calculation, NAL decoder

m 1 Week by 1 Ph.D student
Developing the complete testbench consumed the most time

Co_d_e O—F) _,w:ommand
Verifier % @ loader
W ®

—0—0-
nC -+@p
Vil Caculatorin.i 4
CAVLD)
verifier @ Q@ D core NAL Bit-stream
— decodere‘__@ Loader

H.264 VLD Computation

v

19

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

H.264 VLD RTL Design

m Abstraction adapters are inserted between channel TLMs
and the VLD computation RTL

m Two days by a Ph.D student

Code Q<_ o —@®) FIFO § é:ommand
Verifier Q @ @ @ loader
> nC
| Caculator i
< vLD [*
G FRO -@E core
o) NAL
e decoder -
Verifier . Bit-stream
H.264 VLD Computation LG

20

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Case 1: Low-End Decoder System

. DMA . '”t')'l-o‘:('? Dual Port
fOCESSOr Controller €-blocking Memory
Filter

* QCIF 15 fps

* No FMO

 AHB Bus
Dual Port New
Memory MEe ITQ VLD Core

m Component Architecture Decisions (By system designer)
Single AHB bus slave only
The size of array for nC calculation is 220 bits
Implement the array with registers (RegArray architecture)

21

ASP-DAC 2006

Reusable Component IP Design using Refinement-based Design Environment

Communication Refinement

m Refine FIFO channels into Bus-wired FIFO architecture
m Refine Array channel into Register Array FIFO architecture

VLD VLD /
\ Command Output Bus_sender
Generator Verifier —

Bus_recever

Bus_sender

Bus sender

Bus_receiver

Bus_recever

- s !
@A ~—0—
L NAL FIFOsram W'Eit—stream
CAVLD decoder Loader
WA
Output CFD @ (D VLD Core |—
Verifier = W
/ \ i Calculation ARRAY o
\ = Block (R)i
H -.q_\
-
® g |
-/ | I
@

22

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Refined Component Architecture

%F::pt::tj Guxlﬁimd Ox;l{;?ut Bi’j;'ijrm - Group bus Channels and mapped
N o oy e~ into the shared bus CATtree

m The mapped shared bus is

(R} L oy o
Bus_reader Elus_sender Bus_reader Bus_reader . .
refined into AHB bus system
m Total Gate Count (0.18 um)

1 .- Configured H.264 VLD IP Computation:
— o »«{ AHBSlave IF |= raee . 8277 g ates@ 5ns
:;.wdt:; 34.2 bit — :«udtrrw. sgut Communication:
=] : ’ epth: 3 [
lass gates ool Ly 4153 gates § 12,150 gates @ 3 ns

564 gates
Bus_recever Bus_keeper Bus_receiver .
]
[]
L]

width: 5 bit §
g AL (RY index: 44
4 deceder 2732 gates

ﬁ
o
b
G
=il NS VLD Core @ 5 .
3 nc 1)
a4 * 0
Calculation o :
width: 16 bit = Block (R}|3 :
depth: 16 < :
3103 gatea 8277 gates
L y 2

23

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Case 2: High-End Decoder System

- DMA 5 '”IC')'I-O‘LP Dual Port
fOCESSOr Controller €-blocking Memory
Filter
* HDV 30 fps
External

* FMO SDRAM
« AHB Bus

Dual Port New

Memory MEe TR VLD Core

m Component Architecture Decisions (By system designer)
Bit-stream FIFO is refined into the FIFO with array architecture

The size of array for nC calculation is 92160 bytes
=» Refine the array into the Cached SDRAM architecture

Refine CAVLD output FIFO into RegFIFO

24

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Communication Refinement

{ SDRAM _ctrl)
SDRAM

VLD VLD f."
Command Output

Generator Verifier f

Bus_sender

®
/
©

Bus_sender

bl

|

Bus_recever

Bus_recever

i
¢ Array FIFO @g

.@)_Q:{)_
NAL FIFOsray 3 Wan-s.tream
. ' decoder Loader
CAVLD - I

Out.put.(FD (HD VLD Core
Verifier / %

F
nc (W
\ Calculation ARRAY o
/ Block [R "
[:

\\
ORCIIDEC S

Ty

25

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Refined Component Architecture

VLD VLD m Total Gate Count (0.18 um)

Command Output
Gene‘ratur Verifier Com Utation:
@ @ 8277pgates@5 ns
21 |2 Communication:
maste A &=
SNk 10,559 gates @ 3 ns
Bit-stream B
Loader
| AHB Slave IF ,
W
width: 32 bit‘ shared_bus_slave) width: 12 bit FIFO RTLUE I

depth: 4 depth: 4

G664 gates
1488 gates g width: 8 bits 288 gates
3732 gates 4
R R

width: 16 bit — — NAL
depth: 16 < decoder R
2816 gates

(@ VLD Core

g sng

snQ” paleys

4/l 1B1SEl gHY I

?_’D 0414 Aeiy

] 3
il y W @
al nC =
L _}]
O Calculation [= o ¥
o =t EBlock R \aj w
N : =4
=
8277 gates width: 5 bit 288 gates
depth: 16
1283 gates

26

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Conclusion

m A HW component IP design method that enhances the
reusability is explained.

m \We changed the role of designers

HW Component designer: capture a computation function and
describe RTL

System designer: configure the communication part of the
computation to be best-fit to the system architecture

m The proposed method has merits because:
The reusabillity of a component is greatly enhanced

A system designer can explore larger design space to find more
better system.

Component design productivity is high because we provide
completely verified communication templates

27

