
1

Reusable Component IP Design
using Refinement-based Design Environment

Sanggyu Park
Seoul National University

ASP-DAC 2006
26. Jan. 2006

2

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Introduction
� Standard Interface-based Hardware Components

� Required for Reuse-centric Design Methodology
� Easy hardware integration
� Drawbacks

� Too many architectural decisions in component
� Complex design and verification

� A new component IP design methodology
� Efficient component IP design & verification
� More flexible communication

� Refinement-based design concept for component IP
design

3

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Outline
� Introduction

� Drawbacks of Standard-Interface-based Component IP

� CATtree-based Design Methodology

� Component IP Design Flow

� Case study: H.264 Decoder VLD Component Design

� Conclusion

4

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Reuse-Centric Design Approach

IP Provider Platform Provider

System Design House

Design a derivative system
re-using pre-described

IPs and Platforms

IP Providers, Platform Providers
and System Designers are
different people or groups

Interface standardization

5

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Drawback of Standard Interface [1]
� A standard interface-based HW component contains

many communication architectural decisions that limits
system level design space

Buffer BufferBus
Master

Interface

Bus
Slave

Interface

On-chip
SSRAM

Controller

On-chip
SSRAM

FA
FB

1. Micro-architecture of FA and FB

Architectural Details

2. FA communicates with FB with ‘AHB’ bus
3. FA is a bus master, FB is a bus slave
4. There are two buffers of specific depths
5. FA uses an on-chip SSRAM

Component A Component B

Limits reusability or system architecture

6

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Drawback of Standard Interface [2]
� Standard interface-based HW has many sub-functions

� A component contains many sub-functions that controls
standard interfaces

• FA and FB
• Buffer
• Bus master interface
• Bus slave interface
• On-chip SSRAM controller

Many sub-functions

High Complexity of
Design & Verification

Buffer BufferBus
Master

Interface

Bus
Slave

Interface

On-chip
SSRAM

Controller

On-chip
SSRAM

FA
FB

Many Sub-functions

Component A Component B

7

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Drawback of Standard Interface [3]
� A standard interfaces such as on-chip buses, defines

complex protocols to be a generic interface
� AHB: Error, Split, Retry, Arbitration, etc

� A component should support all defined protocols
� In a system, some protocols are not needed
Î Unnecessary overhead and complexity

� Design and verification of fully compliant component

Î very, very, very difficult

8

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Problem Summary

Architectural Decisions

1. Micro-architecture of FA, FB

2. FA communicates with FB with ‘AHB’ bus
3. FA is a bus master, FB is a bus slave
4. Buffer depths
5. FA uses an on-chip SSRAM

Design Complexity (# of sub-functions)

1. sub-components FA, FB

2. Buffer
3. Bus master interface
4. Bus slave interface
5. On-chip SSRAM controller

Verification Complexity

2. Bus master interface
3. Bus slave interface

Computation

Communication

9

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Proposed Solution
� Applying the design orthogonalisation concept to the

component IP design flow

Computation
Capture a computation with abstract interfaces

Q: What are computations and what are not?

Computation

Communication

Refine communication architecture
according to the system architecture

Q: What are communication architectures?

10

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

What are communications?
� What are communication functions ?

� A data transfer? buses? FIFO ?
� Or functions which are not computations?

� What are communication architectures?
� A bus system? Switched network? NoC?
� HW or SW implemented FIFO?
� Memories?

� Clear guides to function capture and architecture refinement
are needed

11

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

CATtree
� Communication Architecture Template Tree (CATtree)

� A collection of information that covers a specific range of
communication function and its architectures

� Channel: a function model of a CATtree (in SystemC)
� Interface: defines a set of functions the channel provides

� TLM I/F in SystemC, RTL I/F in HDL, SW I/F in SystemC
� Abstraction adapters

� TLM-to-RTL and RTL-to-TLM abstraction adapters
� Architecture Templates

� parameterized implementation of architectures that are used for channel
refinement

� TLM templates in SystemC, RTL templates in HDL, SW templates in C

12

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

FIFO CATtree

FIFOR W
FIFO read interface FIFO write interface

Bus-Wired FIFO
Architecture

R WM SM S

Memory-wired FIFO
Architecture

R W

Array
AR AW

AR AW

Array-Wired FIFO Adapter

Master-Write
Bus-wired FIFO

Master-Read
Bus-wired FIFO

13

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Array CATtree

ArrayAR AW
Array read interface Array write interface

Bus-Wired Array
Architecture

AR AWM SM S

Cached Array
Architecture

AR AW

Array

AR AW

AR AW

Array

AR AW

AR AW
Cache AR AW

SSRAM
O

O

SSRAM Controller

AR AW

SDRAM
D

D

SDRAM Controller

On-chip
SSRAM Array
Architecture

External
SDRAM Array
Architecture

14

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

SSRAM

O

O

Complex Architecture Refinement

FIFOR W

Memory-wired FIFO
Architecture

R W

Array

AR AW

AR AW

Array-Wired FIFO Adapter

R W
AR AW

Array-Wired FIFO Adapter

Cached Array
Architecture

AR AW

Array
AR AW

AR AW
Cache

R W
AR AW

Array-Wired FIFO Adapter

AR AW

AR AW

AR AW
Cache

SSRAM Controller

A complex FIFO Architecture that
contains array cache, SSRAM controller
and SSRAM

On-chip
SSRAM
Array

15

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

CATtree Library
� CATtree Library

� A set of CATtrees
� Clearly shows what are communication functions & architectures
� Currently, we developed 14 CATtrees

FIFO Array Variable

Event Handshaking Shared Bus

Shared Event Block-read FIFO Block-write FIFO

Multi-read FIFO Multi-write FIFO 2D/3D Array

CATtree
Library

TLM Models

RTL Models

SW Models

16

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

CATtree-based HW Component Design

Function
Capture

• Describe computation TLM (SystemC)
• Describe testbench computation TLM (SystemC)
• Integrate computations with CATtree channels
• Verify & Validate the computation function

Computation
RTL Description

• Describe computation RTL in HDL
• Insert abstraction adapters
• Verify the computation RTL

Role of
Component

Designer

Communication
Refinement

• Refine the communication part of the
computation to be best-fit to the
target system architecture
• Using CATtree architecture templates

Role of
System

Designer

17

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Standard I/F-based v.s. CATtree based
Standard I/F-based Component CATtree-based Component

Buffer
Bus

Master
Interface

On-chip
SSRAM

Controller

On-chip
SSRAM

FA
FA

W FIFOW R FB
R

Array

AR AW

AR AW

Many architectural decisions. Hints for comm. refinement

Many sub-components to be
designed and verified

Only computation should be
designed and verified.

Complex protocols and
difficult compliance test

Simple protocols only.Complex
protocols are handled by channels

18

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Case Study: H.264 Design

VLD
Core

nC
Caculator

NAL
decoder

ARAR

AWAW

R

RW

W

H.264 VLD Computation

• QCIF 15 frame per second
• No Flexible Macroblock Ordering
• Communication backbone: AHB Bus

Low-End Application

• HDV 30 frame per second
• Flexible Macroblock Ordering
• Communication backbone: AHB Bus

High-End Application

We designed one
H.264 VLD Computation

Configured
Communication parts

for two different
system architecture

19

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

H.264 VLD TLM Design

VLD
Core

nC
Caculator

NAL
decoder

Array
AR

AW

AR

AW

FIFOR WR
Bit-stream

LoaderW

RW

FIFO
R

W
FIFO

R

Code
Verifier

R W Command
loader

W

FIFOR W W
CAVLD
Verifier W

H.264 VLD Computation

� A VLD and 4 Testbench computations in TLM
� VLD contains sub-functions: VLD core, nC calculation, NAL decoder

� 1 Week by 1 Ph.D student
� Developing the complete testbench consumed the most time

20

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

H.264 VLD RTL Design
� Abstraction adapters are inserted between channel TLMs

and the VLD computation RTL
� Two days by a Ph.D student

VLD
Core

nC
Caculator

NAL
decoder

Array
AR

AW

FIFOR W

Bit-stream
Loader

W

Code
Verifier

R
Command

loader
R

FIFOR W

CAVLD
Verifier

W

H.264 VLD Computation

FIFOR W FIFOR W

W

W R

R

AR

AW

21

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Case 1: Low-End Decoder System

� Component Architecture Decisions (By system designer)
� Single AHB bus slave only
� The size of array for nC calculation is 220 bits
� Implement the array with registers (RegArray architecture)

Processor
DMA

Controller

In-Loop
De-blocking

Filter

Dual Port
Memory

Dual Port
Memory

MC ITQ New
VLD Core

• QCIF 15 fps
• No FMO
• AHB Bus

22

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Communication Refinement
� Refine FIFO channels into Bus-wired FIFO architecture
� Refine Array channel into Register Array FIFO architecture

23

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Refined Component Architecture
� Group bus channels and mapped

into the shared bus CATtree
� The mapped shared bus is

refined into AHB bus system
� Total Gate Count (0.18 um)

� Computation:
8277 gates@5 ns

� Communication:
12,150 gates @ 3 ns

24

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Case 2: High-End Decoder System

Processor
DMA

Controller

In-Loop
De-blocking

Filter

Dual Port
Memory

Dual Port
Memory

MC ITQ New
VLD Core

External
SDRAM

� Component Architecture Decisions (By system designer)
� Bit-stream FIFO is refined into the FIFO with array architecture
� The size of array for nC calculation is 92160 bytes
Î Refine the array into the Cached SDRAM architecture

� Refine CAVLD output FIFO into RegFIFO

• HDV 30 fps
• FMO
• AHB Bus

25

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Communication Refinement

26

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Refined Component Architecture
� Total Gate Count (0.18 um)

� Computation:
8277 gates@5 ns

� Communication:
10,559 gates @ 3 ns

27

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Conclusion
� A HW component IP design method that enhances the

reusability is explained.
� We changed the role of designers

� HW Component designer: capture a computation function and
describe RTL

� System designer: configure the communication part of the
computation to be best-fit to the system architecture

� The proposed method has merits because:
� The reusability of a component is greatly enhanced
� A system designer can explore larger design space to find more

better system.
� Component design productivity is high because we provide

completely verified communication templates

