
1

Reusable Component IP Design
using Refinement-based Design Environment

Sanggyu Park
Seoul National University

ASP-DAC 2006
26. Jan. 2006

2

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Introduction
Standard Interface-based Hardware Components

Required for Reuse-centric Design Methodology
Easy hardware integration
Drawbacks

Too many architectural decisions in component
Complex design and verification

A new component IP design methodology
Efficient component IP design & verification
More flexible communication

Refinement-based design concept for component IP
design

3

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Outline
Introduction

Drawbacks of Standard-Interface-based Component IP

CATtree-based Design Methodology

Component IP Design Flow

Case study: H.264 Decoder VLD Component Design

Conclusion

4

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Reuse-Centric Design Approach

IP Provider Platform Provider

System Design House

Design a derivative system
re-using pre-described

IPs and Platforms

IP Providers, Platform Providers
and System Designers are
different people or groups

Interface standardization

5

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Drawback of Standard Interface [1]
A standard interface-based HW component contains
many communication architectural decisions that limits
system level design space

Buffer BufferBus
Master

Interface

Bus
Slave

Interface

On-chip
SSRAM

Controller

On-chip
SSRAM

FA
FB

1. Micro-architecture of FA and FB

Architectural Details

2. FA communicates with FB with ‘AHB’ bus
3. FA is a bus master, FB is a bus slave
4. There are two buffers of specific depths
5. FA uses an on-chip SSRAM

Component A Component B

Limits reusability or system architecture

6

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Drawback of Standard Interface [2]
Standard interface-based HW has many sub-functions

A component contains many sub-functions that controls
standard interfaces

• FA and FB
• Buffer
• Bus master interface
• Bus slave interface
• On-chip SSRAM controller

Many sub-functions

High Complexity of
Design & Verification

Buffer BufferBus
Master

Interface

Bus
Slave

Interface

On-chip
SSRAM

Controller

On-chip
SSRAM

FA
FB

Many Sub-functions

Component A Component B

7

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Drawback of Standard Interface [3]
A standard interfaces such as on-chip buses, defines
complex protocols to be a generic interface

AHB: Error, Split, Retry, Arbitration, etc

A component should support all defined protocols
In a system, some protocols are not needed

Unnecessary overhead and complexity

Design and verification of fully compliant component

very, very, very difficult

8

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Problem Summary

Architectural Decisions

1. Micro-architecture of FA, FB

2. FA communicates with FB with ‘AHB’ bus
3. FA is a bus master, FB is a bus slave
4. Buffer depths
5. FA uses an on-chip SSRAM

Design Complexity (# of sub-functions)

1. sub-components FA, FB

2. Buffer
3. Bus master interface
4. Bus slave interface
5. On-chip SSRAM controller

Verification Complexity

2. Bus master interface
3. Bus slave interface

Computation

Communication

9

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Proposed Solution
Applying the design orthogonalisation concept to the
component IP design flow

Computation
Capture a computation with abstract interfaces

Q: What are computations and what are not?

Computation

Communication

Refine communication architecture
according to the system architecture

Q: What are communication architectures?

10

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

What are communications?
What are communication functions ?

A data transfer? buses? FIFO ?
Or functions which are not computations?

What are communication architectures?
A bus system? Switched network? NoC?
HW or SW implemented FIFO?
Memories?

Clear guides to function capture and architecture refinement
are needed

11

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

CATtree
Communication Architecture Template Tree (CATtree)

A collection of information that covers a specific range of
communication function and its architectures
Channel: a function model of a CATtree (in SystemC)
Interface: defines a set of functions the channel provides

TLM I/F in SystemC, RTL I/F in HDL, SW I/F in SystemC
Abstraction adapters

TLM-to-RTL and RTL-to-TLM abstraction adapters
Architecture Templates

parameterized implementation of architectures that are used for channel
refinement
TLM templates in SystemC, RTL templates in HDL, SW templates in C

12

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

FIFO CATtree

FIFOR W
FIFO read interface FIFO write interface

Bus-Wired FIFO
Architecture

R WM SM S

Memory-wired FIFO
Architecture

R W

Array
AR AW

AR AW

Array-Wired FIFO Adapter

Master-Write
Bus-wired FIFO

Master-Read
Bus-wired FIFO

13

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Array CATtree

ArrayAR AW
Array read interface Array write interface

Bus-Wired Array
Architecture

AR AWM SM S

Cached Array
Architecture

AR AW

Array

AR AW

AR AW

Array

AR AW

AR AW
Cache AR AW

SSRAM
O

O

SSRAM Controller

AR AW

SDRAM
D

D

SDRAM Controller

On-chip
SSRAM Array
Architecture

External
SDRAM Array
Architecture

14

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

SSRAM

O

O

Complex Architecture Refinement

FIFOR W

Memory-wired FIFO
Architecture

R W

Array

AR AW

AR AW

Array-Wired FIFO Adapter

R W
AR AW

Array-Wired FIFO Adapter

Cached Array
Architecture

AR AW

Array
AR AW

AR AW
Cache

R W
AR AW

Array-Wired FIFO Adapter

AR AW

AR AW

AR AW
Cache

SSRAM Controller

A complex FIFO Architecture that
contains array cache, SSRAM controller
and SSRAM

On-chip
SSRAM
Array

15

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

CATtree Library
CATtree Library

A set of CATtrees
Clearly shows what are communication functions & architectures
Currently, we developed 14 CATtrees

FIFO Array Variable

Event Handshaking Shared Bus

Shared Event Block-read FIFO Block-write FIFO

Multi-read FIFO Multi-write FIFO 2D/3D Array

CATtree
Library

TLM Models

RTL Models

SW Models

16

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

CATtree-based HW Component Design

Function
Capture

• Describe computation TLM (SystemC)
• Describe testbench computation TLM (SystemC)
• Integrate computations with CATtree channels
• Verify & Validate the computation function

Computation
RTL Description

• Describe computation RTL in HDL
• Insert abstraction adapters
• Verify the computation RTL

Role of
Component

Designer

Communication
Refinement

• Refine the communication part of the
computation to be best-fit to the
target system architecture
• Using CATtree architecture templates

Role of
System

Designer

17

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Standard I/F-based v.s. CATtree based
Standard I/F-based Component CATtree-based Component

Buffer
Bus

Master
Interface

On-chip
SSRAM

Controller

On-chip
SSRAM

FA
FA

W FIFOW R FB
R

Array

AR AW

AR AW

Many architectural decisions. Hints for comm. refinement

Many sub-components to be
designed and verified

Only computation should be
designed and verified.

Complex protocols and
difficult compliance test

Simple protocols only.Complex
protocols are handled by channels

18

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Case Study: H.264 Design

VLD
Core

nC
Caculator

NAL
decoder

ARAR

AWAW

R

RW

W

H.264 VLD Computation

• QCIF 15 frame per second
• No Flexible Macroblock Ordering
• Communication backbone: AHB Bus

Low-End Application

• HDV 30 frame per second
• Flexible Macroblock Ordering
• Communication backbone: AHB Bus

High-End Application

We designed one
H.264 VLD Computation

Configured
Communication parts

for two different
system architecture

19

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

H.264 VLD TLM Design

VLD
Core

nC
Caculator

NAL
decoder

Array
AR

AW

AR

AW

FIFOR WR
Bit-stream

LoaderW

RW

FIFO
R

W
FIFO

R

Code
Verifier

R W Command
loader

W

FIFOR W W
CAVLD
Verifier W

H.264 VLD Computation

A VLD and 4 Testbench computations in TLM
VLD contains sub-functions: VLD core, nC calculation, NAL decoder

1 Week by 1 Ph.D student
Developing the complete testbench consumed the most time

20

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

H.264 VLD RTL Design
Abstraction adapters are inserted between channel TLMs
and the VLD computation RTL
Two days by a Ph.D student

VLD
Core

nC
Caculator

NAL
decoder

Array
AR

AW

FIFOR W

Bit-stream
Loader

W

Code
Verifier

R
Command

loader
R

FIFOR W

CAVLD
Verifier

W

H.264 VLD Computation

FIFOR W FIFOR W

W

W R

R

AR

AW

21

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Case 1: Low-End Decoder System

Component Architecture Decisions (By system designer)
Single AHB bus slave only
The size of array for nC calculation is 220 bits
Implement the array with registers (RegArray architecture)

Processor
DMA

Controller

In-Loop
De-blocking

Filter

Dual Port
Memory

Dual Port
Memory

MC ITQ New
VLD Core

• QCIF 15 fps
• No FMO
• AHB Bus

22

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Communication Refinement
Refine FIFO channels into Bus-wired FIFO architecture
Refine Array channel into Register Array FIFO architecture

23

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Refined Component Architecture
Group bus channels and mapped
into the shared bus CATtree
The mapped shared bus is
refined into AHB bus system
Total Gate Count (0.18 um)

Computation:
8277 gates@5 ns
Communication:
12,150 gates @ 3 ns

24

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Case 2: High-End Decoder System

Processor
DMA

Controller

In-Loop
De-blocking

Filter

Dual Port
Memory

Dual Port
Memory

MC ITQ New
VLD Core

External
SDRAM

Component Architecture Decisions (By system designer)
Bit-stream FIFO is refined into the FIFO with array architecture
The size of array for nC calculation is 92160 bytes

Refine the array into the Cached SDRAM architecture
Refine CAVLD output FIFO into RegFIFO

• HDV 30 fps
• FMO
• AHB Bus

25

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Communication Refinement

26

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Refined Component Architecture
Total Gate Count (0.18 um)

Computation:
8277 gates@5 ns
Communication:
10,559 gates @ 3 ns

27

ASP-DAC 2006 Reusable Component IP Design using Refinement-based Design Environment

Conclusion
A HW component IP design method that enhances the
reusability is explained.
We changed the role of designers

HW Component designer: capture a computation function and
describe RTL
System designer: configure the communication part of the
computation to be best-fit to the system architecture

The proposed method has merits because:
The reusability of a component is greatly enhanced
A system designer can explore larger design space to find more
better system.
Component design productivity is high because we provide
completely verified communication templates

