
An Interface-Circuit Synthesis Method
with Configurable Processor Core in
IP-Based SoC Designs

Shunitsu Kohara, Naoki Tomono, Junpei Uchida,
Yuichiro Miyaoka, Nozomu Togawa,
Masao Yanagisawa, Tatsuo Ohtsuki

Department of Computer Science, Waseda University

January 26th, 2006

Outline

Introduction
IP-Based SoC Design Method

Design Flow
Architecture Model
Interface

IFC_Synthesizer
IFC Architecture
IFC Synthesis Method

Experimental Results
Conclusion

Introduction

Introduction (1)

Requirements for SoC design
Small Area, high performance and low energy
Design in a short period and low cost

Method for designing in a short period
IP-Based Design：

Reuse of IPs (Intellectual Property)

Configurable Module：

Adjustment for performance / area cost

Introduction (2)

IP-Based SoC Design:

Interface circuit should be designed
automatically
Previous works about an interface
generation target such a situation

Introduction (3)

IP-Based SoC Design with Configure
Processor Core:

Interface circuit is affected by the
configurable processor core

Introduction (4)

Our Proposal:
IFC Architecture
IFC Synthesis Method

IFC: An Interface Circuit between
a Configurable Processor Core and
a Hardware IP

IP-Based SoC Design Method

Design Flow

1. Application HW/SW
partitioning

2. (HW part) Selecting
HW IPs from DB

3. (SW part) Processor
Core Synthesis

4. Interface Circuit
Synthesis

IFC_Synthesizer

Input:
Hardware IP Interface
Description (CWL)
Processor Core
Parameters
IFC Templates (HDL)

Output:
Interface Circuit (HDL)

Interface Description Language:
CWL (Compornent Wrapper Language)

interface ex1:
port:

input.clock clk;
input.control cmd;
input.control req;
output.control ack;
output.data[31:0] dat;

endport
alphabet:

signalset all = {clk, cmd, req, ack, dat};
W: {R, ?, 0, 0, ?};
O(Xa): {R, 0, 1, 0, ?};
ERR: {R, 0, 1, 1, ?};

endsignalset
endalphabet
word:

read(reg[9:0] Xa, reg[7:0] Xd) :
Q(Xa) W{0,8} [O(Xd) | ERR];

endword
endinterface

Architecture Model

A Processor Core
A Memory
Several Hardware IPs with IFC
A Shared Bus

Interface between Processor Core and
Hadware IP

Based on ARM7TDMI Coprocessor
Interface

Signal Interface
for Handshake Protocol

Instruction Interface
for Data Processing and Transferring

Signal Interface

CoProcesosr ->
ProcessorCoProcessor BusyCPB

CoProcessor ->
Processor

CoProcessor AbsentCPA

Processor ->
CoProcessor

Not CoProcessor
InstructionnCPI

directionmeaningname

* Here, CoProcessor = Hardware IP

Instruction Interface

Hardware-IP-Instructions:

CDP (CoProcessor Data Operation)
Operate data in the Hardware IP

LDC/STC (CoProcessor Load/Store Operation)
Transfer data between IP and memory

MRC/MCR (Register Transfer Operation)
Transfer data between IP and processor core

IFC_Synthesizer

IFC Architecture
IFC Synthesis Method

IFC Architecture – transferring data

BUS_I/O: controlling data flow via shared bus
REGISTER: Saving data from / to a shared memory

IFC Architecture – control

DECODER: Decoding Hardware-IP-Instructions
INST_QUEUE: Preserving decoded bit vectors
HANDSHAKE: Handling handshake protocol
CONTROLLER: Controlling all units in IFC with control signals

IFC Synthesis Method

Synthesizing CONTROLLER is essential
Refer to the paper about the ohters

CONTROLLER

state

sub-state

control signals (HDL)

CONTROLLER Synthesis Algorithm

1. Ports Decision
External and internal ports in IFC are decided

2. States Decision
States for processing and transferring data are

decided

3. Sub-states Decision
Sub-states, which define control signals to all the

units, are decided

4. Sub-state Transitions Decision
Transitions among sub-states are decided

Step1: Ports Decision
port:

input.clock CLK;
input.enable EN;
input.control[1:0] CONT;
input.data[7:0] ADR;
output.data[31:0] DATA;

endport
alphabet:

signalset a = {CLK, EN, CONT, ADR, DATA};
I: {R, 1, 2’b01, x, Z };
N: {R, 1, 2’b00, x, Z };

R(Xa): {R, 1, 2’b10, Xa, Z };
O(Xd): {R, 1, 2’b11, x, Xd };

endsignalset
endalphabet
word:

proc(Xa,Xd): (R(Xa) N[2])[1,2] O(Xd)[3];
endword

BUS_IO_S: out std_logic;
HANDSHAKE_RUN: out std_logic;
HANDSHAKE_TR: out std_logic;
REG_EN: out std_logic;
IP_EN: out std_logic;
IP_CONT: out

std_logic_vector(1 downto 0);

Harware IP CWL

IFC HDL

Focusing on “port” section
in CWL
Deciding ports in HDL

Step2: States Decision
port:

input.clock CLK;
input.enable EN;
input.control[1:0] CONT;
input.data[7:0] ADR;
output.data[31:0] DATA;

endport
alphabet:

signalset a = {CLK, EN, CONT, ADR, DATA};
I: {R, 1, 2’b01, x, Z };
N: {R, 1, 2’b00, x, Z };

R(Xa): {R, 1, 2’b10, Xa, Z };
O(Xd): {R, 1, 2’b11, x, Xd };

endsignalset
endalphabet
word:

proc(Xa,Xd): (R(Xa) N[2])[1,2] O(Xd)[3];
endword

Harware IP CWL

Hardware-IP-Instruction set

S_CDP_2

CDP 1, 1
CDP 1, 2
LDC 1, 16, …
STC 1, 16, …
…

Deciding “state” from
Hardware-IP-Instruction set
In this case, the word “proc”
in CWL correspond with the
instruction “CDP 1 2”

Step3: Sub-States Decision
port:

input.clock CLK;
input.enable EN;
input.control[1:0] CONT;
input.data[7:0] ADR;
output.data[31:0] DATA;

endport
alphabet:

signalset a = {CLK, EN, CONT, ADR, DATA};
I: {R, 1, 2’b01, x, Z };
N: {R, 1, 2’b00, x, Z };

R(Xa): {R, 1, 2’b10, Xa, Z };
O(Xd): {R, 1, 2’b11, x, Xd };

endsignalset
endalphabet
word:

proc(Xa,Xd): (R(Xa) N[2])[1,2] O(Xd)[3];
endword

Harware IP CWL

S_CDP_2

if CURRENT_STATE = S_CDP_2_1 then
BUS_IO_S <= ‘0’;
HANDSHAKE_RUN <= ‘1’;
HANDSHAKE_TR <= ‘0’;
REG_EN <= CNT_Q(3 downto 0);
IP_EN <= ‘1’;
IP_CONT <= “10”;

S_CDP
2_1

S_CDP
2_2

S_CDP
2_3

IFC HDL

Deciding “sub-states” from
“word” section in CWL
Deciding control signals
every sub-state from
“alphabet” section in CWL

elsif CURRENT_STATE = S_CDP_2_2 then
if CNT_Q = 3 then

NEXT_STATE <= S_CDP_2_1;
elsif CNT_Q = 6 then

NEXT_STATE <= S_CDP_2_3;
else

NEXT_STATE <= S_CDP_2_2;
end if;

Step4:
Sub-States Transitions Decision

port:
input.clock CLK;
input.enable EN;
input.control[1:0] CONT;
input.data[7:0] ADR;
output.data[31:0] DATA;

endport
alphabet:

signalset a = {CLK, EN, CONT, ADR, DATA};
I: {R, 1, 2’b01, x, Z };
N: {R, 1, 2’b00, x, Z };

R(Xa): {R, 1, 2’b10, Xa, Z };
O(Xd): {R, 1, 2’b11, x, Xd };

endsignalset
endalphabet
word:

proc(Xa,Xd): (R(Xa) N[2])[1,2] O(Xd)[3];
endword

Harware IP CWL

S_CDP_2

Deciding sequences of sub-
states from “word” section in
CWL

S_CDP
2_1

S_CDP
2_2

S_CDP
2_3

R, N, N, R, N, N, O, O, O

Experimental Results

Target Application

MPEG-4 Encoder

HW part SW part

Using Hardware IPs

3.6000ME / MC

2.4480DCT / IDCT

0.3904RGB to YCrCb

Area [mm2]Function

2

4

Issue

8
ALU x 1
MUL x 1

DSP70.2251.7554B

47
ALU x 2
MUL x 2

RISC81.3005.9723A

#Regs#ALUsKernel

ConfigurationsFrequency
[MHz]

Area
[mm2]

Name

Configuration of Synthesized Processor Cores

Results (1)

0.1638BME/MC

0.1547AME/MC

0.1108BDCT/IDCT

0.1028ADCT/IDCT

0.1148BRGB to YCrCb

0.1080ARGB to YCrCb

IFC area
[mm2]

Processor
Core

function

Results (2)

IFC_Synthesizer
Implemented in Ruby Language
Executed on Linux 2.4, Pentium III
500MHz, RAM 192MB

Execution time of IFC_Synthesizer
Max: 9.4 [sec]
Min: 4.3 [sec]

Manual design:
about 3 days

IFC_Synthesizer reduces the cost of designing an interface circuit

Conclusion

Conclusion

Our proposal:
IFC Architecture
IFC Synthesis method

IFC_Synthesizer reduce IFC development
cost

Execution time … less than 10 [sec]
Manual design … about 3 [days]

Future Work
Clock Gating for Low Energy Consumption

Thank you

Why IFCs are need?
IFCs should be in a synthesized
processor.

Result in a same thing (if IFCs are
in a synthesized processor core).
Since hardware IPs act parallely,
IFCs are required independently
every hardware IP.

Why CWL is adopted?

Interface Language is required for
Hardware IP database.
CWL is based on a regular
expression, so we can describe
wave form simply.
CWL parser (XML converter) has
been prepared.

Why XML converter is need?

For parsing.

What is Ruby Language?
Why Ruby is adopted?

Ruby is Object Oriented Script
Language.
http://www.ruby-lang.org

IFC_Synthesizer need not have high
performance.
Of cource, other language can be
adopted.

Architecture of Processor Core

Inst-
Bus

X-Bus RF1

Shifter ALU

DSP kernel

RISC kernel

RF2

Mult
Mult
Add

Y-Bus

ALU

Loop

DSP: 3 pipeline stages
RISC: 5 pipeline stages

Processor
Kernel

ALUs, Register Files …

Assembly
code

Area of processor

max

Execution Time

min

Time

[1] N. Togawa, M. Yanagisawa and T. Ohtsuki,
``A hardware/software co-synthesis system for digital signal processor core,'‘IEICE
Trans. on Fundamentals, vol. E82-A, no.11, 1999.

Time

Processor
Kernel

min

max

Time Constraints

Processor
Kernel

Synthesized processor core

Connections

IFC Architecture
Processor Core

Hardware IP

IFC Synthesis Method – BUS_I/O

Depending on a bit length of a shared bus
Independent of an using hardware IP

IFC Architecture – BUS_I/O

controlling data flow via shared bus:
1. Hardware-IP-Instructions to DECODER
2. Input Data from BUS to REGISTER
3. Output Data from REGISTER to BUS

IFC Architecture – DECODER

Decoding Hardware-IP-Instructions
Queuing decoded bit vector into INST_QUEUE

IFC Architecture – INST_QUEUE

Preserving decoded bit vectors
Dequeuing them into CONTROLLER

IFC Architecture – HANDSHAKE

Interface for handshake signals (nCPI, CPA, CPB)
Handling handshake protocol
Communication with CONTROLLER

IFC Architecture – REGISTER

(input REGISTER) Saving data from a shared memory
(result REGISTER) Saving data from the hardware IP

IFC Architecture – CONTROLLER

Controlling all units in IFC with control signals
Controlling the hardware IP for processing data
See below for further details

IFC Synthesis Method – DECODER

Depending on a synthesized processor core.
… Instruction encoding specification

Independent of an using hardware IP

IFC Synthesis Method – INST_QUEUE

Depending on a synthesized processor core.
… Pipeline stages

Independent of an using hardware IP

IFC Synthesis Method – HANDSHAKE

Fixed
… Handshake protocol has been defined.

IFC Synthesis Method – REGISTER

The size of registers is given by processor
core synthesis system
… Hardware-IP-instructions used in Software

include the length of transferring data

IFC Synthesis Method – CONTROLLER

Next slides …

Using Hadware IPs

3.6000ME / MC

2.4480DCT / IDCT

0.3904RGB to YCrCb

area [mm2]function

* Hitachi 0.35 um CMOS

Configuration of Synthesized Processor
Cores

2

4

Issue

8
ALU x 1
MUL x 1

DSP70.2251.7554B

47
ALU x 2
MUL x 2

RISC81.3005.9723A

#Regs#ALUsKernel

Configurations
Frequency

[MHz]
Area

[mm2]
Name

[13] N. Togawa et al, IEICE Trans. Fundamentals, vol. E82-A, no.11 1999

