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Data transfer and storage is bottleneck

Data transfer and storage dominate
Power consumption
Size
Performance
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Data transfer and storage is bottleneck

Data transfer and storage dominate
Power consumption
Size
Performance
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Loop Transformations (LTs) are one of the most 
important high-level optimizations 

By improving data access locality and regularity
Shorten data access lifetime
Potentially give better data reuse and in-place mapping, 

and reduce the accesses to off-chip memory

This paper focus on loop fusion and
loop shifting

Before loop fusion
for(x=0;x<99;x++)

for(y=0;y<99;y++)
= f1( A[x][y] );

for(x=0;x<99;x++)
for(y=0;y<99;y++)

= f2( A[x][y] );

Off-chip 
SDRAM

CPU

20000 
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Problem definition

Improving data locality & regularity is very abstract cost 
function

DOES NOT represent the actual memory platform utilization 
Different LTs can be optimal for different memory platforms

LTs are usually performed globally at the high level
Memory platform is not defined yet
Huge number of LT possibilities exist

•i.e. to find the optimal loop fusion for array contraction is a NP-problem
Ad-hoc decison might lead to final sub-optimal solution

•Existing heuristics  for LTs usually result in single LT instance

Estimation is hence necessary to find all the good LTs
Can Help find the right LTs when a memory platform is given later
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Previous works

Previous works on memory size requirement estimation
[Balasa95], [Grun98], [Zhao99], [Kjeldsberg02], [Rydlandl03], [Hu04]
All focus on one layer memory
Not represent how the memory platform is exploited

•Multiple layer memory hierarchy architecture widely used

We propose to do hierarchical memory size estimation to 
guide the LTs exploration

Target on Scratch-Pad Memory (SPM) based memory hierarchy platform

Previous works on memory hierarchy platform exploitation
[Brockmeyer02] does the actual exploitation and too time consuming for 
the estimation purpose 
[Kandemir02] only permits limited LTs
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HMSE flow graph

HMSE is classified as
1st round HMSE

•Start from c-code

Incremental HMSE
•Proceeded when LTs are 
performed incrementally
•To improve the estimation 
computation time

Pareto curves comparison
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for (i=0; i<10; i++)
for (j=0; j<2; j++)
for (k=0; k<3; k++)
for (l=0; l<3; l++)
for (m=0; m<5; m++)
… = A[i*15+k*5+m];

Data Reuse Analysis (DRA)

Identify the frequently accessed data
usually just a part of array

Constructed at each loop nest dimension for every array

j

15
5
l

array
index

time

A’
S=15

Array A
S=150

A’’
S=5
R=20
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Bounding-box based DRA

The data accessed at each iteration at the analyzing 
dimension are represented as bounding box

Simple for analysis and also for the final code generation
Fast
Can loose some accuracy when

the data accessed is not exact
bounding box

for(i=0;i<10;i++)
for(j=0;j<10;j++)

for(k=0;k<5;k++)
= fun( array[i+2k][i+k])

data accessed at 2nd iteration
data accessed at 1st iteration of i-dim

data accessed at 3rd iteration

Update part

Reuse part



Qubo Hu @ ASP-DAC 2006, Yokohama, Japan 13

Data reuse analysis output

Data Reuse Trees (DRTrees) output example
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Memory hierarchy layer assignment (MHLA)

To map the heavily accessed data to the given memory 
hierarchy in order to optimize the power consumption
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Platform independent MHLA estimation

Our MHLA estimation heuristic
Based on a two-layer memory hierarchy template
The most beneficial copy candidate (CC) or array is assigned 
at each time

•SPM layer size increasese
•Result in Pareto points

#Accessesmain_memory SizeSPM

•Output a Pareto curve
Fast as each CC and array is considered only once

Main
memory

SPM

reg
ųP

Main_memory
accesses

SPM Size

** *
*

* * *
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HMSE flow graph

Incremental HMSE 
Proceeded when LTs are 
performed incrementally

Incremental LTs usually 
have local effects

•No need to redo
the whole HMSE

Consists of 
•Incremental DRA
•MHLA estimate

LTs performed are 
represented as matrix 
operations

Pareto curves comparison

c-code

Geometrical
Model

DRA

MHLA 
estimation

end

N

MHLA 
estimation

incremental LT 

LT Matrices
Y

Incremental 
DRA



Qubo Hu @ ASP-DAC 2006, Yokohama, Japan 17

Incremental DRA: how-to-do

Three alternatives based on the evaluation of LT matrices
Rebuild DRTrees for all arrays
Only rebuild DRTrees for transformed arrays
Locally update DRTrees

•Only update DRTrees at where transformations take effects
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Global Pareto curve generation

A global Pareto curve is generated among all Pareto curves
Consists of all the optimal Pareto points 

•The one having lowest main memory accesses at the same SPM 
size among all points

All LTs contributed to the optimal Pareto point are kept for that point

size

#main memory acesses

Global Pareto curve
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Power estimate

Pareto curve enables a power estimation for any two layer 
memory platform configurations

Principle: the point having the closest size to the SPM layer for the 
given memory platform represents the optimal data mapping
Total power = #accessesSPM * power/accessSPM + 

#accessesmain memory * power/accessmain memory

size

#main memory acesses
Main

memory

SPM

reg
ųP

mapping
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Experiments on Cavity Detection

Pareto curves output for 4 selected versions of loop fusion 
and loop shifting performed
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Power estimate for Cavity Detection
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Experiments on QSDPCM
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Power estimate for QSDPCM
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Conclusion and Future work

A fast platform-independent HMSE methodology presented
Several techniques for improving the computation speed have 
been introduced

•Bounding-box based DRA
•A platform independent MHLA estimation
•Incremental DRA

It reports all the good LTs performed
Experiments show our estimate is fast and also pretty accurate
Can help designer trade-off  the memory platform selection at later 
design stage 

Future work
To extend HMSE to support other affine loop transformations
To further take into account inplace mapping
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