A Novel Instruction
~Scratchpad Memory

Optimization Method based on
Concomitance Metric

Andhi Janapsatya, Aleksandar Ignjatovic,
Sri Parameswaran
School of Computer Science and Engineering

2 UNSW

THE UNIVERSITY OF NEW SOUTH WALES
Meeod SYDNEY o AUSTRALIA

N

N

Outline

#Scratchpad Memory vs Cache Memory
#Motivation and Goal

#Existing Work

Allocation Algorithm
#Experiment and Results
#Conclusion

N

Cache Memory

#Cache memory uses SRAM cells.

#Hardware tag checking mechanism to
control content of cache memory.

#® Software does not need to control
content of the cache memory.

ﬂ Cache Architecture

| Memory Address |
,—',! - - - /, {/L
| Upper bits |
@)
=0)
tag RAM o L Data RAM
(SRAM) = - (SRAM)
- L - L
Output OQutput
Driver Driver
Ll
Comparator
Logic
Hit/Miss Data

Automatic
checking of cache
hit/miss using tag-
checking process.

#®Every instruction
fetch has to go via
cache.

N

Scratchpad Memory

Scratchpad memory uses SRAM cells.
#No hardware tag checking mechanism.
Software controlled.

#Smaller total cells area compared to
cache memory due to non-existent of
tag-RAM.

#Less energy consumption compared to
cache memory.

Scratchpad Memory

”jb

Memory Address

1T #No Tag-RAM.

- Upr o | . #Smaller chip
i tagRAM | [8 S| Data RAM darea per bits
(SRAM) = |2~ (SRAM)
compared to
cache memory.
- | -
. Output Output
...... Driver | 2t
i “Comparator
.................. ng_ip______

Hit/Miss Data

Cache Memory

N

#Energy consumption breakdown for
instruction cache (direct-mapped).

CACTI energy
estimation tools
shows that 36% of

TNy direct-mapped cache
64% access energy is due
to tag-RAM access.
(0.18 um)

Scratchpad vs Cache

Size Cache acc. | SPM acc. | ratio || Cache acc. | SPM acc. |ratio
(bytes) | time(ns) time(ns) energy(nJ) | energy(nlJ)

512 1.19 0.74 1.61 || 1.37 0.18 7.61
1024 |[1.24 0.78 1.59 || 1.37 0.19 7.21
2048 1.30 0.83 1.57 || 1.39 0.20 6.95
4006 | 1.31 0.88 1.49 1| 1.42 0.23 6.17
8192 |1.34 1.05 1.28 1] 1.49 0.29 5.14
16384 | 1.64 1.21 1.36 || 1.55 0.36 4.31

N

Motivation

#Embedded application and embedded
processor are known prior to execution.

#Profiling can identify the hot-spots in

applications.

#\\e aim to take advantage of profiling
iInformation, knowledge of the application, and
the processor architecture for system
optimization.

#\WWe propose the use of instruction scratchpad
memory (SPM) as a replacement of the
iInstruction cache.

Motivation

N

#Existing scratchpad memory methodologies
utilize loop analysis to identify objects that are
to be executed from the scratchpad memory.

#Loop analysis can be a complex procedure to
execute.

#Precise structure of a loop is irrelevant for
deciding which object is to be executed from
the scratchpad memory.

Example

f @
L/

for (a=0; a < M; a++){
If (a <K)

X = sin(a); K=sin@ &=cos(@d

else

| X = cos(a); @

K =100; M=200;
Temporal information can record the time
difference in the execution of the two paths.

A

Example

f @
L/

for (a=0; a < M; a++){
if (a == even) //if (a < K)

X = sin(a); K=sin@ &=cos(@d

else

| X = cos(a); @

A

Replace “if (a < K)” with “if (a is even)”

Loop analysis cannot differentiate the two
cases.

N

Goal

#Utilize scratchpad memory as a
replacement for the instruction cache
memory.

#Use temporal information to analyze the
temporal proximity of different
instruction block objects.

Existing Work

N

#EXxisting work on scratchpad memory
utilization can be classified into:
m Static management of instruction memory

" Dynamic management of instruction
memory

= Static management of data memory
" Dynamic management of data memory

Existing Work

N

Static management refers to scheme
where the content of the scratchpad
memory does not change during the
execution of a program.

#And dynamic management refers to
architecture that can change the content
of the scratchpad memory during
execution.

Existing Work

N

#Panda [1997] and Avissar[2002]
presented schemes for static
management of data SPM.

#Kandemir[2002] introduced dynamic
management of SPM for data memory.

#Udayakumaran[2003] improve the
dynamic management scheme for data
SPM.

Existing Scratchpad Systems

N

Steinke [2002] and Angiolini [2003]
presented scheme for static instruction
scratchpad memory.

#Janapsatya [2004] presented a dynamic
management scheme for instruction
scratchpad memory.

Existing Work

N

@ Janapsatya [2004] identify frequently
executed code segments within the program
and chose these code segments to be
executed from the scratchpad memory.

#®They perform loop analysis to identify start of
loops as the point in the program to copy
instruction into the SPM.

Concomitance

N

#Concomitance is a quantitative measure
on the time correlation of two basic
blocks.

#Concomitance is given by the following
equation: (please refer to paper for
further details)

t(a,b,T) = Z W(dle(a),e'(a)]) + Z W(dle(b).e'(b)])
b<le(a).e’ (a)] a<le(b).e’ (b)]
e(a)eT e(b)eT

Concomitance

#®The following is an example of a
concomitance graph.

B

C

D

E

beq $2,$0,400ed8
addu $8,$0,$2

Basic addu $3,$0,$7
Block addu $6,$0,$0
A Iw $2,8($3)

addu $5,$0,$6

addiu $3,$3,12
addiu $6,$5,12
addiu $4,%$4,1
sltu $2,$4,$8

——————> beq $2,50,400f58

Iw $3,4($7)
sltiu $2,$3,32

—————2> bne $2,50,400e98

bne $2,$0,400f70

Iw $7,0($7)

addiu $4,$0,392

———> bne $7,$0.400e68

F

beq $4.$7,404798

addu $7,$0,$2

beq $7,$0,400fb0
Iw $4,-32704($28)
addiu $2,$7,8

21

N
\

Concomitance

#®The concomitance value indicates that
block A, B, C, and D are highly

correlated. M— @\
, @,7 A b |

N

10
T~

o
'z

o\
/

N
Qn

21

N

Concomitance

#Also block A, B, E, and F are highly
correlated.

Concomitance

N

#Also block A, B, E, and F are highly
correlated.

#|ndicate

blocks C, D
may overlap

with E, F In
the memory

N

Allocation Algorithm

(Program Binary)

— #Concomitance table
imulation I . .
(Platform] IS build to provide
(Program Trace) InfOrmatIOn on the
¥) ranking of different
Build -
Concomitance baS|C bIOCk
Table .
" — @ SPM allocation
SPM Allocation .
\Procedure) procedure IS tO
JENEE Y identify points in the
Srocessor and Energy program to insert the
SPM ' Consumption and . t t
Energy Model P?/r;?l:rarlfonnce Copy INSTruction.

- _/

Allocation Algorithm

N

Construct one group containing all the vertices in S;
Sort the concomitance values of all pairs {a, b} of basic blocks
in ascending order;
Start from lowest concomitance value;
For each pair of basic blocks {a,b} {
if the resulting group size is larger than SPM size
Cut the edge connecting a and b

#Edge-cut procedure is applied to the
concomitance graph.

Allocation Algorithm

N

#Edge-cut procedure is used to
determine the sub-graphs for allocation
of basic blocks into the scratchpad
memory.

#The CFG is then used to identify
locations for inserting the SMI (new
instruction).

Allocation Algorithm

N

Edge-cut
procedure
determine the
subgraphs.

q

N

Allocation Algorithm

Analyze the
CFG to
determine
locations of SMI

q

Green arrows

show location
of SMI.

N

Experimental Setup

#Program traces were generated using
SimpleScalar 3.0d [Burger, 1997]

#®Benchmarks were taken from

Mediabench suite [Lee, 1997]

N

Experimental Setup

#Cache memory and scratchpad memory
energy model derived from CACT]
[Shivakumar, 2001] energy model.

#Processor energy model derived from
wattch [Brooks, 2000]

Experimental Setup

Sg?gljggslnar Instruction Cache misses.
L Program Concomitance
Trace Table Performance and
SimpleScalar Energy Calculation.
Binary Edge-Cut Performance and
| Procedure based on Energy
Control concomitance information measurement
Flow Graph Edge Cutting \ Performance
|—> Procedure based on 4 and energy
frequency information[11] measurement.
Time and Energy Model Performance and Energy Comparison.

Processor Model Cache and
(Sim-wattch) SPM model (CACTI)

Results

App. Prog. Total no. Copy Avg. no. SMI Avg. no.

size of insn. 1nsn. of insn. added of Insn.

Exec. 1nser- copied [11] copied into

ted 1nto SPM SPMJ[11]

rawcaudio 9182 6689768 4.6 1247 30.4 741972
rawdaudio 9384 12414463 4.6 1263 29.7 2704463
o72lenc 11052 314594475 6.2 33751706 63 130722589
o721dec 11066 302967631 4.8 12844416 58 87833725
mpeg2enc 26808 1134231679 23.4 4385032 272.86 197787388

Results

App. Prog. Total no. Copy Avg. no. SMI Avg. no.

size of insn. = 1nsn. of insn. added of Insn.

Exec. 1nser- copied [11] copied into

ted 1nto SPM SPMJ[11]

rawcaudio 9182 6689768 4.6 1247 30.4 741972
rawdaudio 9384 12414463 4.6 1263 29.7 2704463
o72lenc 11052 314594475 6.2 33751706 63 130722589
o721dec 11066 302967631 4.8 12844416 58 87833725
mpeg2enc 26808 1134231679 23.4 4385032 272.86 197787388

Results

4

N[/

App. Prog. Total no. Copy | Avg.no.] SMI Avg. no.

size of insn. 1nsn. of insn.] added of Insn.

Exec. 1nser- copied [11] copied into

ted § into SPM SPM[11]

rawcaudio 9182 6689768 4.6 1247 30.4 741972
rawdaudio 9384 12414463 4.6 1263 29.7 2704463

g72lenc 11052 314594475 6.2 133751706 63 130722589
g72ldec 11066 302967631 4.8 4112844416 58 87833725
mpeg2enc 26808 1134231679 23.43 4385032 272.86 197787388

Results

4

\N[J

App. Prog. Total no. Copy | Avg. no. Avg. no.

size of insn. | 1nsn. of 1nsn. of Insn.

Exec. inser- copied copied into

ted § into SPM SPM[11]

rawcaudio 9182 6689768 4.6 1247 30. 741972
rawdaudio 9384 12414463 4.6 1263 : 2704463
g72lenc 11052 314594475 6.2 133751706 3 130722589
o721dec 11066 302967631 4.8 112844416 87833725

mpeg2enc 26808 1134231679 23.4] 4385032 : 197787388

Results

4

\N[J

App. Prog. Total no. Copy | Avg. no. Avg. no.

size of insn. | 1nsn. of 1nsn. of Insn.

Exec. inser- copied copied into

ted § into SPM SPM[11]

rawcaudio 9182 6689768 4.6 1247 30. 741972
rawdaudio 9384 12414463 4.6 1263 : 2704463
g72lenc 11052 314594475 6.2 133751706 3 130722589
o721dec 11066 302967631 4.8 112844416 87833725

mpeg2enc 26808 1134231679 23.4] 4385032 : 197787388

N

Results

#y-axis is energy in mJ

Iso

5O

22 <O

oo ||

rawcaudio

rawdaudio

@O Assoc=1

W Assoc=2

[0 assoc=4

] Assoc=8

W Assoc=16

@ Frequency [11]

W Concomitance

g721enc

2o

oo

Socoo |

<Sooo |

5

g721dec

| Sovoo

m;oegZe ncode

Conclusion

N

Utilize scratchpad memory as a replacement
of the instruction cache memory.

#Concomitance information is used to select
the basic blocks that are to be executed from
the scratchpad memory.

@ Performance improvement and energy
reduction is achieved compared to system
with cache memory.

Thank You

ﬂHardware Modification

#SMI initiates

the SPM
Controller
#®BBT stores

information of
where to copy
in I-SPM.

