CDCTree: Novel Obstacle-Avoiding Routing Tree Construction based on Current Driven Circuit Model

Yiyu Shi¹, Tong Jing², Lei He¹,

Electrical Engineering Department¹ UCLA¹ Los Angeles, California, 90095-1594, USA Tel: 310-206-2037 Fax: 310-206-4685 e-mail: {yshi, lhe}@ee.ucla.edu¹ Zhe Feng² and Xianlong Hong²

Computer Science & Technology Department² Tsinghua University² Beijing, P.R.China 10084 Tel: +86-10-62785564 Fax: +86-10-62781489 e-mail: {jingtong, hx1-dcs}@tsinghua.edu.cn²

Speaker: Lei He

Outline

Introduction

Circuit Model and Tree Construction

Experimental Results

Conclusion

Motivation

- Constructing a rectilinear Steiner minimal tree (RSMT) is a fundamental problem
 - For CAD and algorithm development
- Macro cells, IP blocks, and pre-routed nets are often regarded as obstacles
- Obstacle-avoiding RSMT (OARSMT) construction is often used to estimate wire length and delay for global routing
- OARSMT is NP-hard, and there exists a large room to improve existing heuristics

OARSMT Formulation

- Given: terminal set N and obstacle set O in the Manhattan planar.
- Find: rectilinear Steiner trees ST to connect all terminals in N while avoiding all obstacles in O.
- objective: minimize total wire length L

Existing Algorithms

Algorithms (complexity depends on the size of routing area)

- Maze routing [C.Y. Lee, 1961]
- Line search routing [K. Mikami and K. Tabuchi, 1968; D.W. Hightower, 1969]

Algorithms (complexity depends on the size of cases)

- G3S, B3S, and G4S heuristics [J. L. Ganley and J. P. Cohoon, 1994]
- Exact OAESMT [M. Zachariasen and P. Winter, 1999]
- Based on generalized connection graph [Z. Zhou, C. D. Jiang, L. S. Huang, et al, 2003]
- 2-step heuristic [Y. Yang, Q. Zhu, T. Jing, X. L. Hong, et al, 2003]
- FORst [Y. Hu, J. Feng, T. Jing et al, 2004]
- An-OARSMan [Y. Hu, Z. Feng, T. Jing et al, 2005]

Primary Contribution of this Paper

- All existing algorithms are based on combinatorial optimization
- We propose to simulate routing problem by current-driven circuit, and called our algorithm as CDCtree
 - A new addition to simulated algorithms such as simulated annealing, genetic algorithm, and force-based placement
 - Similar idea used in [Y. Shi et al, 2004] for traffic flow distribution problem.
- Experiments show that we reduce wire length by up to 11.4%
 - Compared to the best existing algorithm

Outline

Introduction

Circuit Model and Tree Construction

Experimental Results

Conclusion

CDCTree: Overview (Two-step procedure)

Circuit Model

- Build escape graph
 - by vertical and horizontal lines from terminals and obstacle edges
- Place a resistor at each edge of the graph
- Add a current source at each terminal
- Connect the circuit to the ground by
 - Either infinite grid (accurate but expensive)
 - Or connecting periphery nodes to GND via resistors (approximation)

Values of Resistors

• GND Resistor

Constant R = 1ohm

EDGE Resistor

- Set $R = 10 \log(L)$, where 10 is used to guarantee R > 0

Obstacle Resistor

- usually have larger current (current flow congestion effect)
- Set $R = 20 \log(L)$ to offset the effect

Circuit Simulation

- The current through each edge can be solved by using nodal analysis (NA) method.
- The equations can be written in matrix form as Ax=b, where A is a positive definite diagonally dominant sparse matrix.
- The equations can be solved efficiently.

Current versus Routing (Key of this work)

• Edges with smaller currents construct the tree.

In general, short-cuts between terminals have stronger compelling forces from current sources at terminals, and therefore have smaller current.

Tree Construction

 Simultaneously start from each terminal and always try to select the edge with the minimum current

- To compensate for the effect that GND resistors draw large current
 - May not move to the periphery node

Tree Construction

 When a neighbor is already visited by the same track, perform U-reduction

Tree Construction

When a neighbor is already visited by other tracks, merge them

Outline

Introduction

Circuit Model Construction and Tree Algorithm

Experimental Results

Conclusion

Experiment Setting

Experiment platform

- Hardware: sun V880 fire workstation
- Software: gcc2.9.1, solaris5.8
- Benchmark data
 - Randomly generate terminals with several kinds of rectilinear polygon obstacles

• rectangle, L-shaped, cross-shaped, etc.

Output to the best existing algorithm:

• An-OARSMan [Hu et al, 2005]

Comparison with An-OARSMan

Terminal #	Obs	An-OARSMan		CDCTree		
	#	Wire	Running	Wire	Running Time (s)	
		Length	Time (s)	Length	Ι	II
3	3	2350	< 0.01	2350	< 0.01	<0.01
5	3	4380	0.01	4350	0.01	< 0.01
7	5	9610	0.04	9610	0.02	0.01
10	5	11340	0.06	10980	0.08	0.02
20	7	14790	0.28	13110	0.84	0.13
30	10	21220	0.77	19970	1.38	0.25
40	10	28600	1.98	27300	4.32	0.77
50	15	31330	3.22	31310	10.25	1.02

CDCtree reduces the wire length by up to 11.4%

Comparison with An-OARSMan

Terminal #	Obs	An-OARSMan		CDCTree		
	#	Wire	Running	Wire	Running Time (s)	
		Length	Time (s)	Length	Ι	Ш
3	3	2350	<0.01	2350	< 0.01	<0.01
5	3	4380	0.01	4350	0.01	<0.01
7	5	9610	0.04	9610	0.02	0.01
10	5	11340	0.06	10980	0.08	0.02
20	7	14790	0.28	13110	0.84	0.13
30	10	21220	0.77	19970	1.38	0.25
40	10	28600	1.98	27300	4.32	0.77
50	15	31330	3.22	31310	10.25	1.02

Runtime I : solve linear equations (dominance); Runtime II: construct RSMT

Gaussian-Sediel iteration is currently used and over 1000x speedup can be achieved to make runtime in Part I negligible.

Routing with Convex Obstacles

Examples from [Hu et al, 2005]

Routing with Concave Obstacles

Examples from [Hu et al, 2005]

Outline

Introduction

Circuit Model Construction and Tree Algorithm

Experimental Results

Conclusion

Conclusion

 A new simulation based CAD algorithm to simulate routing by current-driven circuit (CDCtree)

 CDCtree reduces wire length by up to 11.4% compared to best existing algorithm

Our newest results able to reduce runtime by 100x and with up to 15% more reduction of wire length