Monotonic Parallel and Orthogonal Netlists for Single-Layer BGA packages

Yoichi Tomioka Atsushi Takahashi
Tokyo Institute of Technology
Department of Communications and Integrated System

Example of Routing

Connect finger and ball with same labels Routing layer: one

Monotonic and non-monotonic

Background

```
Netlist
- a set of connection requirements
- some properties
```

Design rule

- space between wires
- wire length of critical net
■ etc . . .
manual routing
By using some properties, a satisfactory routing pattern can be obtained

It takes much time
automatic routing
EVENFANOUT for single layer (1995, Yu and Dai)
Via Assignment for 2-layers
(2005, Kubo and Takahashi)

As the first step,
by only monotonic routes

Netlists

リリリリリIII！
（3）（5）（6）
（1）（7）（9）
（2）（4）（8）

Parallel Netlist
！！！！！！！！！！

リリリリIIリリI

$\square_{\square}^{a} \stackrel{b}{c}^{d}$
（b）（c）（5）
（1）（3）（d）
（2）（a）（4）

Orthogonal Netlist IIIIIIIIII －\circ ○ 0 ○ 0 ○ 0 ○ －○○○ ○ ○ ○ ○ ○
 －$\circ \circ \circ \circ \circ \circ \circ \circ=$ －$-\circ \circ \circ \circ \circ \circ \circ=$

リリリIIII！！

$$
\begin{aligned}
& \text { (b) (5) (d) } \\
& \begin{array}{lll}
c & \square & \text { (2) (3) } \\
b & \square & \\
a
\end{array} \\
& \text { (4) } \\
& \begin{array}{lllll}
\square & \square & \square \\
1 & 2 & 3 & 4 & 5
\end{array}
\end{aligned}
$$

Problem

Input

Connection requirements between a finger and a ball (Netlist) Goal
To realize all nets by only monotonic routes without intersecting A netlist has at least one monotonic routing pattern \leadsto netlist is monotonic
non-monotonic routing pattern
 monotonic routing pattern

Single Netlist

\| \| \| \| \| \| \| \|

$=\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0\end{array}$

- $000000000=$

- $00000000000=$
- $0000000000 \quad \square$
$\boldsymbol{-} 0 \begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \boldsymbol{m} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \boldsymbol{m}\end{array}$
\|! \| \| \| \| \| \|

Input
Connection requirements between a bottom finger and a ball (Single Netlist)

Goal

Realize it by only monotonic routes
(3) (5) (6)
(1) (7) (9)
(2) (4) (8)

A single netlist is monotonic :
The necessary and sufficient condition is known

<Monotonic Single Netlists>
 Necessary and Sufficient Condition

Fingers are in increasing order from left to right A single netlist is monotonic
\Leftrightarrow nets on each row are in increasing order (1995, Yu and Dai)

non-monotonic netlist

monotonic netlist

Order graph :

- Each vertex corresponds to each net
- Edges represent order constraints

<Monotonic Single Netlists> Necessary and Sufficient Condition

monotonic netlist

acyclic

non-monotonic netlist
cyclic

Parallel Netlists

$\begin{array}{llll}a & b & c & d \\ \square & \square & \square & \square\end{array}$
(b) (c) (5)
(1) (3) (d)
(2) (a) (4)

Input
Connection requirements between a bottom finger and a ball, or a top finger and a ball (Parallel Netlist)

Goal

Realize it by only monotonic routes

Contribution
$>$ The necessary and sufficient condition
$>$ A routing method based on the condition

<Monotonic Parallel Netlists>

Necessary and Sufficient Condition

<Monotonic Parallel Netlists> A Routing Method

Order:

$$
\begin{aligned}
1 \rightarrow 2 \rightarrow \mathrm{a} & \rightarrow \mathrm{~b} \rightarrow 3 \\
& \rightarrow \mathrm{c} \rightarrow 4 \rightarrow \mathrm{~d} \rightarrow 5
\end{aligned}
$$

Orthogonal Netlists

\|!\|!\|!\|!\|!

Input

Connection requirements between a bottom finger and a ball, or a left finger and a ball (Orthogonal Netlist)
Goal
Realize it by only monotonic routes

<Monotonic Orthogonal Netlist>

A Sufficient Condition

Nets on each row and column are in increasing order without distinguishing bottom and left nets

<Monotonic Orthogonal Netlists>
A Routing Method
for netlists satisfying the sufficient condition
By connecting nets one by one as lower-left as possible

Order:

$$
\begin{aligned}
1 \rightarrow 2 \rightarrow \mathrm{a} & \rightarrow 3 \rightarrow \mathrm{~b} \\
& \rightarrow \mathrm{c} \rightarrow 4 \rightarrow 5 \rightarrow \mathrm{~d}
\end{aligned}
$$

<Monotonic Orthogonal Netlists>

Other Monotonic Orthogonal Netlists

<Monotonic Orthogonal Netlists>

Other Monotonic Orthogonal Netlists

Our sufficient condition is not a necessary condition

<Monotonic Orthogonal Netlist>

A Necessary Condition

Order Graph G_{N}
In any monotonic routing pattern,
left net \rightarrow wires passing above it

- bottom net \rightarrow wires passing to the right of it

We proved that for a netlist,
G_{N} is cyclic \square The netlist is non-monotonic

<Monotonic Orthogonal Netlists>

Order Graph G_{N}

In any monotonic routing pattern,
left net \rightarrow wires passing above it
\checkmark bottom net \rightarrow wires passing to the right of it

Constraints between two nets

<Monotonic Orthogonal Netlist>
Constraints between three nets

<Monotonic Orthogonal Netlist>

Constraints between three nets

<Monotonic Orthogonal Netlists > Alternative Constraints

Either a passes to the right of 3 and 4, or 3 and 4 passes above a

<Monotonic Orthogonal Netlists>
 Monotonic Routing

Routes of bottom nets passes as left as possible

Passes to the right of

- connected balls
- unconnected left net balls in lower-left region of its ball

<Monotonic Orthogonal Netlists> Monotonic Routing

Routes of bottom nets passes as left as possible

Passes to the right of

- connected balls
- unconnected left net balls in lower-left region of its ball

< Monotonic Orthogonal Netlists > Experiments and Results

- According to routing order,
 combinations of alternative constraints change, and whether G_{N} is cyclic depends on it

Problems of 56 sizes from 5×5 to 60×60 In each size 100 patterns

Fault: Two instances in 44x44 and 45x45
(Because G_{N} became cyclic due to the alternative edges added in routing process)

Complete : the others (even for 3000 nets, within 1 second)

Conclusion

Monotonic Parallel Netlist

- The necessary and sufficient condition
- A routing method based on it

Monotonic Orthogonal Netlist

- A necessary condition and a sufficient condition
- A routing method based on our necessary condition

Future Work

- Propose a routing method with consideration of wire congestion, since various monotonic routing patterns exist for a monotonic netlist - Realize automation of package routing, by putting our methods into practice

