Monotonic Parallel and Orthogonal Netlists for Single-Layer BGA packages

#### Yoichi Tomioka Atsushi Takahashi Tokyo Institute of Technology Department of Communications and Integrated System



# **Example of Routing**

Connect finger and ball with same labels Routing layer : one

Bad



Good



3

### Monotonic and non-monotonic



## Background

#### Netlist

a set of connection
 requirements

#### some properties

#### Design rule

- space between wires
- wire length of critical net

■ etc . . .

#### manual routing

By using some properties, a satisfactory routing pattern can be obtained

It takes much time

#### automatic routing EVENFANOUT for single layer (1995, Yu and Dai) Via Assignment for 2-layers (2005, Kubo and Takahashi)

Satisfactory routing pattern Most of routes are monotonic As the first step, by only monotonic routes

### Netlists

#### Single Netlist 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ο 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ο 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .........



| Parallel Netlist |       |    |   |          |                |    |    |   |  |  |
|------------------|-------|----|---|----------|----------------|----|----|---|--|--|
|                  |       | L  |   | I        |                |    |    |   |  |  |
|                  | 0     | 0  | 0 | 0        | 0              | 0  | 0  | 0 |  |  |
|                  | 0     | 0  | 0 | 0        | 0              | 0  | 0  | 0 |  |  |
|                  | 0     | 0  | 0 | 0        | 0              | 0  | 0  | 0 |  |  |
|                  | 0     | 0  | 0 | 0        | 0              | 0  | 0  | 0 |  |  |
|                  | 0     | 0  | 0 | 0        | 0              | 0  | 0  | 0 |  |  |
|                  | 0     | 0  | 0 | 0        | 0              | 0  | 0  | 0 |  |  |
|                  | 0     | 0  | 0 | 0        | 0              | 0  | 0  | 0 |  |  |
|                  | 0     | 0  | 0 | 0        | 0              | 0  | 0  | 0 |  |  |
|                  |       |    |   |          | L              |    | I. |   |  |  |
|                  |       |    |   | <b>b</b> |                | al |    |   |  |  |
|                  |       |    | a | b        | C              | d  |    |   |  |  |
|                  |       |    |   |          |                |    |    |   |  |  |
|                  | (b) ( |    |   |          | <b>c</b> ) (5) |    |    |   |  |  |
|                  | -     |    |   |          |                |    |    |   |  |  |
|                  |       | 1  | ) | 3        |                | d  |    |   |  |  |
|                  |       | (2 |   | a        |                | (  | 4  |   |  |  |
| 1 2 3 4 5        |       |    |   |          |                |    |    |   |  |  |

#### **Orthogonal Netlist** 0 0 0 0 0 0 0 0 \_ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .........



6

# Problem

#### Input

Connection requirements between a finger and a ball (Netlist) Goal

To realize all nets by only monotonic routes without intersecting

A netlist has at least one monotonic routing pattern is monotonic

non-monotonic routing pattern





monotonic routing pattern

# Single Netlist

|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |
|---|---|---|---|---|---|---|---|---|---|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - |
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |
| - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |
|   | I |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |

#### Input

- Connection requirements between a bottom
- finger and a ball (Single Netlist)
- Goal
  - Realize it by only monotonic routes



A single netlist is monotonic : The necessary and sufficient condition is known





## Parallel Netlists





#### Input

- Connection requirements between a bottom
- finger and a ball, or a top finger and a ball
- (Parallel Netlist)
- Goal
  - Realize it by only monotonic routes

#### Contribution

- The necessary and sufficient condition
- > A routing method based on the condition

### <Monotonic Parallel Netlists> Necessary and Sufficient Condition



Nets on each row are in increasing order without distinguishing bottom and top nets



# <Monotonic Parallel Netlists> A Routing Method



# **Orthogonal Netlists**



#### Input

- Connection requirements between a bottom
- finger and a ball, or a left finger and a ball
- (Orthogonal Netlist)
- Goal
  - Realize it by only monotonic routes



#### Contribution

- A sufficient condition
- A necessary condition
- A routing method based on the necessary condition

# <Monotonic Orthogonal Netlist> A Sufficient Condition

Nets on each row and column are in increasing order without distinguishing bottom and left nets



<Monotonic Orthogonal Netlists> A Routing Method for netlists satisfying the sufficient condition

By connecting nets one by one as lower-left as possible





Order:

$$\rightarrow 2 \rightarrow a \rightarrow 3 \rightarrow b$$

<Monotonic Orthogonal Netlists> Other Monotonic Orthogonal Netlists



<Monotonic Orthogonal Netlists> Other Monotonic Orthogonal Netlists





Our sufficient condition is not a necessary condition <Monotonic Orthogonal Netlist>
A Necessary Condition

#### Order Graph $G_N$

In any monotonic routing pattern,

- ◆ left net wires passing above it
- bottom net wires passing to the right of it



We proved that for a netlist,

<Monotonic Orthogonal Netlists>
Order Graph G<sub>N</sub>

In any monotonic routing pattern,

- ◆ left net wires passing above it
- bottom net wires passing to the right of it



### Constraints between two nets



# <Monotonic Orthogonal Netlist> Constraints between three nets



# <Monotonic Orthogonal Netlist> Constraints between three nets



### <Monotonic Orthogonal Netlists > Alternative Constraints



Either a passes to the right of 3 and 4, or 3 and 4 passes above a

# <Monotonic Orthogonal Netlists> Monotonic Routing



Routes of bottom nets passes as left as possible

Passes to the right of
connected balls
unconnected left net balls
in lower-left region of its ball

# <Monotonic Orthogonal Netlists> Monotonic Routing



Routes of bottom nets passes as left as possible

Passes to the right of
connected balls
unconnected left net balls
in lower-left region of its ball

### < Monotonic Orthogonal Netlists > Experiments and Results



 ◆ According to routing order, combinations of alternative constraints change, and whether G<sub>N</sub> is cyclic depends on it

Problems of 56 sizes from 5x5 to 60x60 In each size 100 patterns

Fault : Two instances in 44x44 and 45x45 (Because  $G_N$  became cyclic due to the alternative edges added in routing process )

Complete : the others (even for 3000 nets, within 1 second)

# Conclusion

Monotonic Parallel Netlist

- The necessary and sufficient condition
- A routing method based on it

Monotonic Orthogonal Netlist

- A necessary condition and a sufficient condition
- A routing method based on our necessary condition

#### Future Work

Propose a routing method with consideration of wire congestion, since various monotonic routing patterns exist for a monotonic netlist
 Realize automation of package routing, by putting our methods into practice