

A Routability Constrained Scan Chain Ordering Technique for Test Power Reduction

X.-L. Huang, and J.-L. Huang

Laboratory of Dependable System Graduate Institute of Electronic Engineering National Taiwan University

Outline

Introduction

- Preliminaries
- The Proposed Technique
- Experimental Results
- Conclusion

Introduction

- Scan-based testing is the most popular Design-for-Testability (DfT) technique for digital sequential circuits.
- Problems with scan-based testing
 - Elevated Power Consumption:
 - ATPG patterns usually cause higher logic switching activities.
 - Scan cells toggle at a higher frequency during the scan chain shifting operation.
 - Routability Degradation:
 - Extra scan cell connections.

Test Power Management Techniques

- Reported approaches can be divided into following categories:
 - 1. Power-aware test pattern generation (for ATE or BIST).
 - 2. Test pattern and/or scan chain ordering
 - 3. Primary input control to suppress logic transitions
 - 4. Scan chain and/or clock scheme modification to suppress logic transitions.
- One may adopt a hybrid approach to maximize the test power reduction.

- The proposed technique is based on scan chain ordering.
- The goal is to find a scan cell chaining order to minimize the power dissipation during scan chain shifting operation without violating any user-specified routing constraint.
- Advantages:
 - No negative impact on the test time and fault coverage
 - Impacts less on the design flow
 - Can be easily combined with other power reduction techniques.

Main Contributions

- Allows the user to explicitly set the routing constraints.
- The achievable power reduction is much less sensitive to the routing constraints.
- Can be easily integrated into the conventional design flow.

Outline

- Introduction
- <u>Preliminaries</u>
- The Proposed Technique
- Experimental Results
- Conclusion

Definitions of Power Consumption

- Total Power (Energy)
 - The sum of power consumption during test application.
- Peak Power
 - The highest value of power at any given instance.

Power Dissipation of Scan-Based Testing

- Power dissipation of scan-based testing is expensive, especially during the scan chain shifting operations.
- To reduce the overall test power, it is crucial to reduce the scan shifting power.
- The scan shifting power can be divided into two parts:
 - 1. The scan cell switching activities.
 - 2. The induced logic switching activities.

- Exact evaluation of the total logic switching activities during scan shifting is time-consuming.
- Studies have shown that the number of scan chain transitions and the induced logic element transition are fairly closely related.
- The number of scan chain switching activities is a good indication of the overall power consumption during scan shifting operations.

Notations

- **f**: The number of scan cells in the scan chain
- (*c*₁, *c*₂, ...*c*_{*f*}) : The *f* scan cells
- $O = (o_1, o_2, \dots, o_f)$: The scan chain ordering
- *V* = (*v*₁,*v*₂...,*v*_f) : *f*-bit test pattern
- $R = (r_1, r_2, \dots, r_f)$: *f*-bit test response

$$f = 4$$

$$V = 1 \ 0 \ 1 \ 1$$

$$R = 0 \ 1 \ 1 \ 0$$
Scan-In $\longrightarrow C_2 \longrightarrow C_4 \longrightarrow C_1 \longrightarrow C_3 \longrightarrow$ Scan-Out
$$O = (2, 4, 1, 3)$$
Scan-In $\rightarrow 0 \ 1 \ 1 \ 1$

$$1 \ 0 \ 0 \ 1 \rightarrow$$
Scan-Out

Transition Estimation of a Test Pattern

• WT(V) : Weighted transition of a test pattern V.

$$WT(V) = \int_{i=1}^{f-1} i \bar{7}(v_{oi} \dagger v_{oi+1})$$

- \oplus detects if there is a transition between two bits v_{oi} and v_{oi+1} .
- "i" is the weight of the transition between v_{oi} and v_{oi+1} .
- A transition between v_{oi} and v_{oi+1} will cause *i* scan cells start from Scan-In pin to change their states

Scan-In
$$\leftarrow C_1 \leftarrow C_2 \leftarrow C_3 \leftarrow C_4 \leftarrow$$
 Scan-Out
 $V = 1 \qquad 0 \qquad 1 \qquad 1$
 $v_{oi} \oplus v_{oi+1} = 1 \qquad 1 \qquad 0$
 $Weight i = 1 \qquad 2 \qquad 3$
 $WT(V) = 1*1 + 2*1 + 3*0 = 3$

Transition Estimation of a Test Response

• *WT(R)* : Weighted transition of a test response R.

$$WT(R) = \int_{i=1}^{f-1} (f - i)\bar{7}(r_{oi} \dagger r_{oi+1})$$

- \oplus detects if there is a transition between two bits r_{oi} and r_{oi+1} .
- "f-i" is the weight of the transition between r_{oi} and r_{oi+1} .
- A transition between r_{oi} and r_{oi+1} will cause *f-i* scan cells start from Scan-Out pip to change their states $\Box \Box \Box \Box \Box \Box \Box \Box \Box \Box \Box$

Scan-In
$$\leftarrow C_1$$
 $\leftarrow C_2$ $\leftarrow C_3$ $\leftarrow C_4$ \rightarrow Scan-Out
 $R = 0 \qquad 1 \qquad 0 \qquad 1$
 $v_{oi} \oplus v_{oi+1} = \qquad 1 \qquad 1 \qquad 1$
 $f - i = \qquad 3 \qquad 2 \qquad 1$
 $WT(R) = \qquad 3 \qquad + \qquad 2 \qquad + \qquad 1 \qquad = \qquad 6$

Total Weighted Transitions

• Weighted transitions of a set of *m* test vectors, $V^1, V^2, ..., V^m$

$$WT(\{V^{1}, V^{2}, \dots, V^{m}\}) = \bigotimes_{j=1}^{m} \sum_{i=1}^{f-1} i \bar{7}(v_{oi}^{j} \dagger v_{oi+1}^{j})$$

• Weighted transitions of a set of *m* output responses, R^1, R^2, \ldots, R^m , where $R^i = (r_1^i, r_2^i, ..., r_f^i)$

$$WT(\{R^{1}, R^{2}, \dots, R^{m}\}) = \bigotimes_{j=1}^{m} \int_{i=1}^{f-1} (f-i)\overline{7}(r_{oi}^{j} \dagger r_{oi+1}^{j})$$

- The transition weight assignment is different in these two equations.
 - One is to scan in and the other is to scan out of the scan chain.

Effectiveness of Scan Chain Reordering

• Proper scan-chain ordering can significantly lower the test power consumption (66% reduction in the example).

Outline

- Introduction
- Preliminaries

• <u>The Proposed Technique</u>

- Experimental Results
- Conclusion

Integration to Conventional Design Flow

Inputs of the Proposed Technique

- Test information
 - The sets of test patterns V^i 's and responses R^i 's.
- Flip-flop information
 - The locations of each scan cell (x_i, y_i) .
 - The power consumption factor p_i
 - Dependent on the flip-flop size, load and induced switching activities in its fanout cone.
- Routing constraints
 - \mathcal{L}_{max} , the maximum allowable scan chain length
 - ℓ_{max} , the maximum allowable Manhattan distance between two successive scan cells.

Flow Chart of the Proposed Technique

- 1. For each scan cell c_i , add a vertex n_i to G.
- 2. For each pair of scan cells (c_i, c_j) , $i \neq j$, add an edge e_{ij} between (n_i, n_j) if the Manhattan distance between c_i and c_j is less than ℓ_{max} .
- 3. Associate with each edge e_{ij} the transition frequency T_{ij} and Manhattan distance D_{ij} between c_i and c_j .

The Manhattan distance D_{ii} between c_i and c_i is defined as

$$D_{ij} = |x_i - x_j| + |y_i - y_j|$$

• The transition frequency T_{ij} is defined as $T_{ij} = \frac{H(B_i, B_j)}{27m}$

- *m* is the number of test vectors. Multiples by 2 is because we have *m* test patterns and *m* test responses.
- **H** denotes the Hamming distance² $(v_i, r_i, v_i^2, r_i^2, ..., v_i^m, r_i^m)$ **B**_i consists of the corresponding bits in the test patterns and responses of c_i , i.e., $B_i =$

Example of Cost Graph Construction

*B*₁=010011

*B*₂=110011

- Scan cell information
 - $c_1: (8, 9), p_1=1.2$
 - $-c_2$: (17, 11), p_2 =1.5
 - $-c_3$: (21, 20), p_3 =1.5
- Test information
 - $-(V_1, R_1)=(010, 110)$
 - $-(V_2, R_2)=(001, 000)$
 - $-(V_3, R_3)=(110, 111)$
- $\ell_{\rm max} = 16$

- For each scan cell add a vertex in the cost graph.
- Manhattan Distance

$$- D_{12} = |8 - 17| + |9 - 11| = 11$$

$$- D_{23} = |17 - 21| + |11 - 20| = 13$$
 Violation

$$- D_{13} = |8 - 21| + |9 - 20| = 24$$

$$- T_{12} = H (010011, 110011)/6 = 1/6$$

$$- T_{23} = H (110011, 001001)/6 = 2/3$$

 $\Box (001001 01001 1) = 1/2$

Finding Next Scan Cell

- A greedy heuristic is used to determine the next scan cell
 - 1. Construct the candidate set.
 - Scan cells that are adjacent to the current flip-flop and not ordered.
 - 2. Calculate the cost of each scan cell in the candidate set.
 - Cost is a function of the Manhattan distance and the transition frequency.
 - 3. The lowest cost one is selected as the next scan cell.
- Termination Condition
 - Empty candidate set
 - Append the selected scan cell to O may violate the routing constraint \mathcal{L}_{max} .

Cost Function

• Let *c_i* be the current flip-flop and *c_j* be the scan cell in the candidate set. The cost function is defined as:

$$\cos t(i,j) = \frac{\alpha \ \overline{7}T_{ij} \ \overline{7}p_j}{p_{\max}} + \frac{\beta \ \overline{7}D_{ij}}{l_{\max}}$$

- p_{max} : maximum scan cell power consumption factor.
- $-\alpha$: Fixed at 100.
- $-\beta$: Automatically adjusted by the algorithm.

Example of Cost Graph Construction

- Scan cell information
 - c_1 : (8, 9), p_1 =1.2 - c_2 : (17, 11), p_2 =1.5 pmax
 - $-c_3$: (21, 20), $p_3 = 1.5$
- Test information
 - $(V_1, R_1) = (010, 110)$
 - $(V_2, R_2) = (001, 000)$
 - $(V_3, R_3) = (110, 1^{1})$
- $\ell_{\text{max}} = 16$

- Suppose current flop-flop is c_2 and β =5.
- Cost computation

$$c_{1}: \cos t(2,1) = \frac{\alpha \,\overline{7}T_{21}\overline{7}p_{1}}{p_{\max}} + \frac{\beta \,\overline{7}D_{21}}{l_{\max}} = 16.7$$

Bias Adjustment

- α is fixed at 100.
- β is set to 0 at the beginning.
 - To totally ignore the routing constraint at the first iteration.
- If the ordering process is terminated due to routing constraint violation, β will be increased by 1.
- Underlying Idea
 - To ignore the routing constraints unless necessary.

Extension to Multiple Scan Chains

- The scan cells belonging to the same clock domain are usually located in the same region in the layout.
 - 1. Group the scan cells belonging to the same clock domain into clusters.
 - 2. Apply the proposed technique to each cluster for test power optimization.

Outline

- Introduction
- Preliminaries
- The Proposed Technique
- Experimental Results
- Conclusion

Experiment Configuration

- Experiments are performed on 6 industrial designs.
- Each design contains only one scan chain with an initial scan chain ordering.
- Sets of test patterns and responses, FF information and routing constraints for these designs are given.
- Test patterns contain no don't care bits.

Circuit Statistics

- **X-span & Y-span** Width and height of the smallest rectangle that encloses all of the flip-flops.
- ℓ_{max} Maximum allowable Manhattan distance between two successive scan cells.
- \mathcal{L}_{max} Maximum allowable scan chain length

Design	# cell	X-span	Y-span	# pattern	l _{max}	\mathcal{L}_{max}
1	596	643	1252	150	648	147124
2	596	990	1188	150	748	130269
3	8755	2810	2338	150	1146	1745662
4	6398	3781	1261	150	1536	4158421
5	5994	1670	1774	150	1016	1571524
6	53964	5670	5774	100	2693	22638289

Experimental Results

- Comparison between original and optimized ordering.
- Total power reduction is in the range of 37-48%.
- Peak power reduction is in the range of 10-22%.
- ℓ the maximum distance between two successive scan cells.
- \mathcal{L} the total scan chain length.

Design	Total Power Reduction(%)	Peak Power Reduction(%)	ℓ Reduction(%)	£ Reduction(%)	β	CPU(sec)
1	37.99	11.94	60.98	65.77	11	2
2	39.57	10.88	60.99	54.34	9	2
3	43.69	16.37	72.06	89.17	12	368
4	44.69	15.20	67.63	85.05	11	229
5	44.08	15.14	65.31	75.38	12	280
6	48.19	22.09	77.20	94.21	23	16,005

Further Analysis – Impact of ℓ_{max}

- Experiments are performed on design 2.
- ℓ_{max} varied from 2,000 to 400.
- \mathcal{L}_{max} fixed at 240,000.
- No apparent degradation of power reduction is observed until *l*_{max}=400, a rather stringent constraint.

ℓ _{max}	Total(%)	Peak(%)	l(%)	L(%)	β
2,000	41.85	13.93	6.59	16.42	7
1,600	41.69	13.67	16.34	23.60	6
1,200	41.44	10.06	37.06	30.77	6
800	41.35	12.62	57.83	21.18	2
400	34.18	6.58	79.70	77.66	24

Further Analysis – Impact of \mathcal{L}_{max}

- Experiments are also performed on design 2.
- \mathcal{L}_{max} varied from 240,000 to 80,000.
- $\ell_{\rm max}$ fixed at 800.
- Again, no apparent degradation of power reduction observed until \mathcal{L}_{max} =80,000.

\mathcal{L}_{max}	Total(%)	Peak(%)	l(%)	L(%)	β
240,000	41.35	12.62	57.83	21.18	2
200,000	40.91	7.29	58.14	34.32	4
160,000	39.56	10.70	58.14	54.07	9
120,000	39.00	10.55	58.14	57.82	11
80,000	36.22	6.86	60.57	71.94	28

Outline

- Introduction
- Preliminaries
- The Proposed Technique
- Experimental Results
- Conclusion

Conclusion

- A simple yet efficient routability constrained scan chain ordering technique for test power reduction is proposed.
- Experimental results on six industrial designs show significant power reduction.
- Furthermore, the algorithm is rather insensitive to routing constraints.

Future Work

- Use commercial tools to get more accurate power consumption information.
- Improve the CPU time on larger designs by reducing the complexity of the proposed algorithm.
- Extend the algorithm to handle the patterns with don't care bits.

Thanks for your attention!