A Routability Constrained Scan Chain Ordering Technique for Test Power Reduction

X.-L. Huang, and J.-L. Huang

Laboratory of Dependable System Graduate Institute of Electronic Engineering

National Taiwan University

Outline

- Introduction
- Preliminaries
- The Proposed Technique
- Experimental Results
- Conclusion

Introduction

- Scan-based testing is the most popular Design-forTestability (DTT) technique for digital sequential circuits.
- Problems with scan-based testing
- Elevated Power Consumption:
- ATPG patterns usually cause higher logic switching activities.
- Scan cells toggle at a higher frequency during the scan chain shifting operation.
- Routability Degradation:
- Extra scan cell connections.

Test Power Management Techniques

- Reported approaches can be divided into following categories:

1. Power-aware test pattern generation (for ATE or BIST).
2. Test pattern and/or scan chain ordering
3. Primary input control to suppress logic transitions
4. Scan chain and/or clock scheme modification to suppress logic transitions.

- One may adopt a hybrid approach to maximize the test power reduction.

Goal

- The proposed technique is based on scan chain ordering.
- The goal is to find a scan cell chaining order to minimize the power dissipation during scan chain shifting operation without violating any user-specified routing constraint.
- Advantages:
- No negative impact on the test time and fault coverage
- Impacts less on the design flow
- Can be easily combined with other power reduction techniques.

Main Contributions

- Allows the user to explicitly set the routing constraints.
- The achievable power reduction is much less sensitive to the routing constraints.
- Can be easily integrated into the conventional design flow.

Outline

- Introduction
- Preliminaries
- The Proposed Technique
- Experimental Results
- Conclusion

Definitions of Power Consumption

- Total Power (Energy)
- The sum of power consumption during test application.
- Peak Power
- The highest value of power at any given instance.

Power Dissipation of Scan-Based Testing

- Power dissipation of scan-based testing is expensive, especially during the scan chain shifting operations.
- To reduce the overall test power, it is crucial to reduce the scan shifting power.
- The scan shifting power can be divided into two parts:

1. The scan cell switching activities.
2. The induced logic switching activities.

Test Power Estimation

- Exact evaluation of the total logic switching activities during scan shifting is time-consuming.
- Studies have shown that the number of scan chain transitions and the induced logic element transition are fairly closely related.
- The number of scan chain switching activities is a good indication of the overall power consumption during scan shifting operations.

Notations

- \boldsymbol{f} : The number of scan cells in the scan chain
- $\left(c_{1}, c_{2}, \ldots c_{f}\right)$: The f scan cells
- $\boldsymbol{O}=\left(\mathbf{o}_{1}, \mathbf{o}_{2} \ldots, \boldsymbol{o}_{f}\right)$: The scan chain ordering
- $\boldsymbol{V}=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \ldots, \boldsymbol{v}_{\boldsymbol{f}}\right): f$-bit test pattern
- $R=\left(r_{1}, r_{2} \ldots, r_{t}\right): f$-bit test response

$$
\begin{aligned}
& f=4 \\
& V=1
\end{aligned} \begin{array}{llll}
1 & 0 & 1 & 1 \\
R=0 & 1 & 1 & 0
\end{array}
$$

Scan-In $\rightarrow 0$ 1

0
$0 \quad 1 \rightarrow$ Scan-Out

Transition Estimation of a Test Pattern

- $W T(V)$: Weighted transition of a test pattern V.

$$
W T(V)={ }_{i=1}^{f-1} i \bar{j}\left(v_{o i} \dagger v_{o i+1}\right)
$$

- \oplus detects if there is a transition between two bits $v_{o i}$ and $v_{o i+1}$.
- "i" is the weight of the transition between $v_{o i}$ and $v_{o i+1}$.
- A transition between $v_{o i}$ and $v_{o i+1}$ will cause i scan cells start from ScanIn pin to nhanme thair ctatne

Transition Estimation of a Test Response

- WT(R) : Weighted transition of a test response R.

$$
W T(R)={ }_{i=1}^{f-1}(f-i) j\left(r_{o i} \dagger r_{o i+1}\right)
$$

- \oplus detects if there is a transition between two bits $r_{o i}$ and $r_{o i+1}$.
- " $f-i$ " is the weight of the transition between $r_{o i}$ and $r_{o i+1}$.
- A transition between $r_{o i}$ and $r_{o i+1}$ will cause f - i scan cells start from Scan-Out nintn nhonnenthnir ntntne $\sqcap \sqcap \sqcap \sqcap \sqcap \sqcap \sqcap \sqcap \sqcap \sqcap \square \square \square \square$

Total Weighted Transitions

- Weighted transitions of a set of m test vectors, $V^{1}, V^{2}, \ldots, V^{m}$

$$
W T\left(\left\{V^{1}, V^{2}, \ldots . ., V^{m}\right\}\right)={\underset{j=1}{\text { 裹 }}}_{i=1}^{f-1} i j\left(v_{o i}^{j} \dagger v_{o i+1}^{j}\right)
$$

- Weighted transitions of a set of m output responses, $R^{1}, R^{2}, \ldots, R^{m}$, where $R^{i}=\left(r_{1}^{i}, r_{2}^{i}, \ldots, r_{f}^{i}\right)$

$$
W T\left(\left\{R^{1}, R^{2}, \ldots . ., R^{m}\right\}\right)={\underset{j=19}{j=1}}_{i=1}^{f-1}(f-i) \bar{j}\left(r_{o i}^{j} \dagger r_{o i+1}^{j}\right)
$$

- The transition weight assignment is different in these two equations.
- One is to scan in and the other is to scan out of the scan chain.

Effectiveness of Scan Chain Reordering

- Proper scan-chain ordering can significantly lower the test power consumption (66% reduction in the example).

Original Scan Chain Order

$\mathrm{O}=(1,2,3,4)$
Total Weighted Transitions $3+6=9$

Optimized Scan Chain Order

$\mathrm{O}=(2,4,3,1)$
Total Weighted Transitions: $1+2=3$

Outline

- Introduction
- Preliminaries
- The Proposed Technique
- Experimental Results
- Conclusion

Integration to Conventional Design Flow

Inputs of the Proposed Technique

- Test information
- The sets of test patterns V's and responses R's.
- Flip-flop information
- The locations of each scan cell ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$).
- The power consumption factor p_{i}
- Dependent on the flip-flop size, load and induced switching activities in its fanout cone.
- Routing constraints
- $\mathcal{L}_{\text {max }}$, the maximum allowable scan chain length
- $\ell_{\text {max }}$, the maximum allowable Manhattan distance between two successive scan cells.

Flow Chart of the Proposed Technique

Cost Graph Construction

1. For each scan cell c_{i}, add a vertex n_{i} to G.
2. For each pair of scan cells $\left(c_{i j}, c_{j}\right), i \neq j$, add an edge $e_{i j}$ between $\left(n_{i}, n_{j}\right)$ if the Manhattan distance between c_{i} and c_{j} is less than $\boldsymbol{\ell}_{\text {max }}$.
3. Associate with each edge $e_{i j}$ the transition frequency $T_{i j}$ and Manhattan distance $D_{i j}$ between c_{i} and c_{j}.

- The Manhattan distance $D_{i j}$ between c_{i} and c_{j} is defined as

$$
D_{i j}=\left|x_{i}-x_{j}\right|+\left|y_{i}-y_{j}\right|
$$

- The transition frequency $T_{i j}$ is defined as

$$
T_{i j}=\frac{H\left(B_{i}, B_{j}\right)}{2 \bar{j} m}
$$

- \boldsymbol{m} is the number of test vectors. Multiples by 2 is because we have m test patterns and m test responses.
- \boldsymbol{H} denotes the Hamming distance ${ }_{\left(v_{i}, r_{i}, v_{i}, r_{i}^{2}, \ldots, v_{i}^{m}, r_{i}^{m}\right)}$
- \boldsymbol{B}_{i} consists of the corresponding bits in the test patterns and responses of c_{i}, i.e., $B_{i}=$

Example of Cost Graph Construction

- Scan cell information

$$
\begin{aligned}
& -c_{1}:(8,9), p_{1}=1.2 \\
& -c_{2}:(17,11), p_{2}=1.5 \\
& -c_{3}:(21,20), p_{3}=1.5
\end{aligned}
$$

- Test information

$$
\begin{array}{ll}
-\left(V_{1}, R_{1}\right)=(010,110) & \boldsymbol{B}_{1}=010011 \\
- & \left(V_{2}, R_{2}\right)=(001,000) \\
- & \boldsymbol{B}_{2}=110011 \\
- & \left(V_{3}, R_{3}\right)=(110,111)
\end{array} \boldsymbol{B}_{3}=001001
$$

- $\ell_{\text {max }}=16$
- For each scan cell add a vertex in the cost graph.
- Manhattan Distance

$$
-D_{12}=|8-17|+|9-11|=11
$$

$$
-D_{23}=|17-21|+|11-20|=13 \text { Violation }
$$

$$
-D_{13}=|8-21|+|9-20|=24
$$

- Transition Frequency
- $T_{12}=H(010011,110011) / 6=1 / 6$
- $T_{23}=H(110011,001001) / 6=2 / 3$

Cost Graph

Finding Next Scan Cell

- A greedy heuristic is used to determine the next scan cell

1. Construct the candidate set.

- Scan cells that are adjacent to the current flip-flop and not ordered.

2. Calculate the cost of each scan cell in the candidate set.

- Cost is a function of the Manhattan distance and the transition frequency.

3. The lowest cost one is selected as the next scan cell.

- Termination Condition
- Empty candidate set
- Append the selected scan cell to O may violate the routing constraint $\boldsymbol{L}_{\text {max }}$.

Cost Function

- Let c_{i} be the current flip-flop and c_{j} be the scan cell in the candidate set. The cost function is defined as:

$$
\cos t(i, j)=\frac{\alpha \overline{ } T_{i j} \bar{j} p_{j}}{p_{\max }}+\frac{\beta \bar{j} D_{i j}}{l_{\max }}
$$

- $p_{\max }$: maximum scan cell power consumption factor.
$-\alpha$: Fixed at 100.
- β : Automatically adjusted by the algorithm.

Example of Cost Graph Construction

- Scan cell information

$$
\begin{aligned}
& -c_{1}:(8,9), p_{1}=1.2 \\
& -c_{2}:(17,11), p_{2}=1.5 \\
& -c_{3}:(21,20), p_{3}=1.5
\end{aligned}
$$

- Test information

$$
\begin{aligned}
& -\left(V_{1}, R_{1}\right)=(010,110) \\
& -\left(V_{2}, R_{2}\right)=(001,000) \\
& -\left(V_{3}, R_{3}\right)=\left(110,1^{\prime} 1\right)
\end{aligned}
$$

- $\ell_{\text {max }}=16$
- Suppose current flop-flop is c_{2} and $\beta=5$.
- Cost computation
C_{3} :
$\cos t(2,3)=\frac{\alpha \bar{j} T_{23} \bar{j} p_{3}}{p_{\text {max }}}+\frac{\beta \bar{j} D_{23}}{l_{\text {max }}}=70.7$

Cost Graph

Bias Adjustment

- $\quad \alpha$ is fixed at 100 .
- $\quad \beta$ is set to 0 at the beginning.
- To totally ignore the routing constraint at the first iteration.
- If the ordering process is terminated due to routing constraint violation, β will be increased by 1.
- Underlying Idea
- To ignore the routing constraints unless necessary.

Extension to Multiple Scan Chains

The scan cells belonging to the same clock domain are usually located in the same region in the layout.

1. Group the scan cells belonging to the same clock domain into clusters.
2. Apply the proposed technique to each cluster for test power optimization.

Outline

- Introduction
- Preliminaries
- The Proposed Technique
- Experimental Results
- Conclusion

Experiment Configuration

- Experiments are performed on 6 industrial designs.
- Each design contains only one scan chain with an initial scan chain ordering.
- Sets of test patterns and responses, FF information and routing constraints for these designs are given.
- Test patterns contain no don't care bits.

Circuit Statistics

- X-span \& Y-span - Width and height of the smallest rectangle that encloses all of the flip-flops.
- $\ell_{\max }$ - Maximum allowable Manhattan distance between two successive scan cells.
- $\mathcal{L}_{\max }$ - Maximum allowable scan chain length

Design	\# cell	X-span	Y-span	\# pattern	$\boldsymbol{\ell}_{\max }$	$\boldsymbol{\ell}_{\max }$
1	596	643	1252	150	648	147124
2	596	990	1188	150	748	130269
3	8755	2810	2338	150	1146	1745662
4	6398	3781	1261	150	1536	4158421
5	5994	1670	1774	150	1016	1571524
6	53964	5670	5774	100	2693	22638289

Experimental Results

- Comparison between original and optimized ordering.
- Total power reduction is in the range of $37-48 \%$.
- Peak power reduction is in the range of $10-22 \%$.
- ℓ - the maximum distance between two successive scan cells.
- \mathcal{L} - the total scan chain length.

Design	Total Power Reduction(\%)	Peak Power Reduction(\%)	ℓ Reduction(\%)	$\mathcal{\ell}$ Reduction(\%)	β	CPU(sec)
1	37.99	11.94	60.98	65.77	11	2
2	39.57	10.88	60.99	54.34	9	2
3	43.69	16.37	72.06	89.17	12	368
4	44.69	15.20	67.63	85.05	11	229
5	44.08	15.14	65.31	75.38	12	280
6	48.19	22.09	77.20	94.21	23	16,005

Further Analysis - Impact of $\ell_{\max }$

- Experiments are performed on design 2.
- $\ell_{\text {max }}$ varied from 2,000 to 400 .
- $\boldsymbol{L}_{\text {max }}$ fixed at 240,000 .
- No apparent degradation of power reduction is observed until $\ell_{\max }=400$, a rather stringent constraint.

$\boldsymbol{\ell}_{\max }$	Total(\%)	Peak(\%)	$\ell(\%)$	$\mathcal{L}(\%)$	β
2,000	41.85	13.93	6.59	16.42	7
1,600	41.69	13.67	16.34	23.60	6
1,200	41.44	10.06	37.06	30.77	6
800	41.35	12.62	57.83	21.18	2
400	34.18	6.58	79.70	77.66	24

Further Analysis - Impact of $\boldsymbol{L}_{\max }$

- Experiments are also performed on design 2.
- $\mathcal{L}_{\text {max }}$ varied from 240,000 to 80,000.
- $\ell_{\text {max }}$ fixed at 800 .
- Again, no apparent degradation of power reduction observed until $\boldsymbol{L}_{\text {max }}=80,000$.

$\mathcal{L}_{\max }$	Total(\%)	Peak(\%)	$\boldsymbol{\ell}(\%)$	$\mathcal{L}(\%)$	β
240,000	41.35	12.62	57.83	21.18	2
200,000	40.91	7.29	58.14	34.32	4
160,000	39.56	10.70	58.14	54.07	9
120,000	39.00	10.55	58.14	57.82	11
80,000	36.22	6.86	60.57	71.94	28

Outline

- Introduction
- Preliminaries
- The Proposed Technique
- Experimental Results
- Conclusion

Conclusion

- A simple yet efficient routability constrained scan chain ordering technique for test power reduction is proposed.
- Experimental results on six industrial designs show significant power reduction.
- Furthermore, the algorithm is rather insensitive to routing constraints.

Future Work

- Use commercial tools to get more accurate power consumption information.
- Improve the CPU time on larger designs by reducing the complexity of the proposed algorithm.
- Extend the algorithm to handle the patterns with don't care bits.

Thanks for your attention!

