Low-Overhead Design of Soft-Error-Tolerant Scan Flip-Flops with Enhanced-Scan Capability

Ashish Goel, Swarup Bhunia*, Hamid Mahmoodi** and Kaushik Roy

Presenter: Kunhyuk Kang

Department of ECE, Purdue University
*Department of EECS, Case Western Reserve University
**School of Engineering, San Francisco State University

ASPDAC, January 2006

Motivation

- Critical charge: Qc
- Scaling: C↓, V↓, Qc↓
- Unlike memories flip flops not protected by parity and ECC

- Cross-coupled inverters
- Feedback increases soft error vulnerability

Motivation

- Reuse of on chip scan design-for-testability (DFT) resources to reduce overhead
- Integration of soft error tolerant flip-flops into the scan path

Scan Flip-flop design of a Microprocessor*

S. Mitra, N. Seifert, M. Zhang, Q. Shi, K. Kim, "Robust System Design with Built-In Soft Error Resilience," *Computer*, vol. 38, No. 2, Feb. 2005, pp. 43-52

Soft Error in Transmission Gate Flip-Flop

- Clk = 1, Master Stage susceptible
- Clk = 0, Slave Stage susceptible
- Need a redundant copy for soft error detection / correction

Reuse of On Chip Scan DFT resources

Scan Reuse for Soft Error blocking* (ISR)

- Scan latches sized up to store a copy of data, increases area and power overhead
- Four latches required to store the two copies of the data_

S. Mitra, N. Seifert, M. Zhang, Q. Shi, K. Kim, "Robust System Design with Built-In Soft Error Resilience," *Computer*, vol. 38, No. 2, Feb. 2005, pp. 43-52

Proposed Design for Enhanced Scan and Soft Error Correction (ESFF-SEC)

Proposed Design (Contd.)

Proposed Design (Contd.)

ESFF-SEC vs. ISR

	ESFF-SEC	ISR
Power	1.0	1.26
Area	1.0	1.61
Setup Time	1.0	1.70
C-to-Q Delay	1.0	1.00

- Power and Area Reduction in the number of latches from four to three
- Setup time Scan Latch is sized up in ISR, more load on the data driver

Proposed Design (Contd.)

Proposed Design for Enhanced Scan and Soft Error Detection (ESFF-SED)

Enhanced Scan Approach to Delay Testing

Scan Gadget Scheme (HSSG)*

- Scan Gadget Scheme (HSSG) uses a Scan Gadget along with system latch to scan in and hold test vector
- Overhead extra latch, complicated design of system flip-flop requiring two clocks and extra timing signals required (SCANCLK, SHIFT)

R. Kuppuswamy et al., "Full Hold-Scan Systems in Microprocessors: Cost/Benefit Analysis," *Intel Technology Journal*, Vol.8, Issue 1, Feb. 2004

Proposed Design for Enhanced Scan Delay Testing (ESFF)

- Drivers I_1 and I_2 converted into latch L3 using T_3 and T_4
- Normal Mode, TC = '1', T_4 is OFF and T_3 is ON
- Test Mode, TC = '0', T_3 is OFF and T_4 is ON, L3 disconnected from L2 and L1, acts as a hold latch
- No extra timing control signals required

Results

Figure. 1

Figure. 3

Figure. 2

- HSPICE simulation of ISCAS89 benchmarks in BPTM 70nm node
- 16% power and 17% area reduction on average at no delay overhead
- % of sequential elements in the benchmark decrease from 74% in s13207 to 22% in s1196, hence total savings decrease

Conclusion

- Novel Flip-Flop designs are proposed having soft error detection/correction capability along with enhanced scan based delay fault testing
- A simplified version having enhanced scan delay fault testing capability is proposed

 Low area and power overhead due to reuse of existing hardware resources

Thank You!

Contact author: Ashish Goel (goel0@purdue.edu)

C-element and Keeper

01	O2	Q
0	0	1
1	1	0
1	0	Previous Value
0	1	Previous Value

 Keeper is used to retain the previous value when O1 and O2 are different from each other