Parasitic Extraction Involving 3-D Conductors Based on Multilayered Green's Function

Zuochang Ye and Zhiping Yu
Institute of Microelectronics
Tsinghua University
Beijing, China

Abstract

- An algorithm for capacitance extraction based on Green's function involving 3-D conductors, considering multi-layered dielectric and lossy substrate
- An Improvement based on an algorithm implemented in ASITIC, for which the metal thickness cannot be included.
- A numerically stable and analytically integrable formula for the Green's function in vertical direction is derived
- The Green's function is integrated over the sidewalls
- The coefficient of potential is efficiently calculated by looking up the table of DCT, DCST and DST

Outline

- Background
- DCT based Green's function method
- Our algorithm
- Result and Comparison
- Conclusion

Capacitive Parasitic Extraction Based on BEM

$\mathrm{Pq}=\mathrm{v}$

- Computing the coefficient-of-potential $p_{i j}$
- Free space method (Direct BEM)
- Green's function method
- Solving the equation $\mathrm{Pq}=\mathrm{V}$
- LU decomposition
- East Multi-pole Method (J. White, MIT)
- Singular Value Decomposition (S. Kapur, Bell Lab)
- Hierarchical Method (W. Shi, TAMU)
- Quasi Multiple Media (W. Yu, THU)

Advantages of Green's Function Method

- Direct BEM method
- Discretize the interfaces between each adjacent dielectrics
- A Large number of variables
- Green's function method
- Layout independent Green's function for technology is solved first
- Dielectric information is included in the Green's function
- Only conductors need to be discretized
- Limited to some certain profiles.

DCT Based Green's Function Method

- Based on multi-layered Green's function
- First proposed by R. Gharpurey in 1996 to analyze the effect of substrate coupling
- Numerically stabilized by A.M. Niknejad in 1998
- Developed to an academic software, ASITIC, which can simulate all kinds of passive elements.
- Conductors are assumed to be infinitely thin, i.e., the thickness is ignored
- Direct extending to 3-D meets problems
[R. Gharpurey, C/CC'96]
[A.M. Niknejad, TCAD'98]

Metal thickness

- Metal width and spacing are getting smaller and smaller, while the thickness is not reducing, sometimes even increases.
- Metal thickness should be considered.

Boundary Conditions and Green's Function

$4 G\left(r^{\prime}, r\right)=-\frac{\delta\left(r-r^{\prime}\right)}{\varepsilon^{\prime}}$
$\dot{\varepsilon}=\varepsilon+\frac{\sigma}{j \omega} \quad$ (complex permittivity)

$$
G=X\left(x^{\prime}, x\right) Y\left(y^{\prime}, y\right) Z\left(z^{\prime}, z\right)
$$

$$
X\left(x^{\prime}, x\right)=\cos \left(\frac{m \pi}{a} x^{\prime}\right) \cos \left(\frac{m \pi}{a} x\right)
$$

$$
Y\left(x^{\prime}, x\right)=\cos \left(\frac{n \pi}{b} y^{\prime}\right) \cos \left(\frac{n \pi}{b} y\right)
$$

$Z\left(z^{\prime}, z\right)$ subjects to:

$$
\begin{gathered}
Z_{k}^{l}\left(z^{\prime}\right)=Z_{k}^{u}\left(z^{\prime}\right) \\
\left.\frac{\mathrm{d} Z_{k}}{\mathrm{dz}}\right|_{z^{\prime}+\delta_{m}+\delta_{m}} ^{z^{\prime}-\delta_{m}}=-\frac{C_{m n}}{a b \epsilon_{k}} \\
\left.Z_{k}\right|_{z=z_{k}}=\left.Z_{k-1}\right|_{z=z_{k}} \\
\left.\epsilon_{k} \frac{\mathrm{~d} Z_{k}}{\mathrm{~d} z}\right|_{z=z_{k}}=\left.\epsilon_{k-1} \frac{\mathrm{~d} Z_{k-1}}{\mathrm{~d} z}\right|_{z=z_{k}} \\
\left.Z_{0}\right|_{z=0}=0 \\
\left.\frac{\mathrm{~d} Z_{\mathrm{N}}}{\mathrm{dz}}\right|_{z=z_{N+1}}=0
\end{gathered}
$$

[R. Gharpurey, CICC'96]

Integration for the Coefficient of Potential

- Green's function

$$
\begin{aligned}
& \left.G=\underset{m=0}{\text { 裹 }} \cos \left(\delta_{m} x x\right) \cos \left(\xi_{n} y\right]\right) \cos \left(\delta_{m} x\right) \cos \left(\xi_{n} y\right) Z_{m n}\left(z^{\prime}, z\right) \\
& p_{i, j}=\frac{1}{S_{j} S_{i}} \quad G\left(x, x\left[, y, y\left[, z, z^{\prime}\right) d s_{i} d s_{j}\right.\right. \\
& \text { - For panels both on } x-y \text { plane }
\end{aligned}
$$

$$
\begin{aligned}
& \cos (x) \mathrm{d} x^{\circ} \quad \sin (x) \quad \sin \left(x_{1}\right) \sin \left(x_{2}\right)^{\circ} \quad \cos \left(x_{1} \upharpoonright x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 64 \text { terms }
\end{aligned}
$$

DCT (Discrete Cosine Transform)
[R. Gharpurey, CICC'96]

For Sidewall Panels...

- Gharpurey'96 (original one)
numerically instable when $\gamma_{m n}$ grows
- Niknejad'98 (resolved the numerical stability)
stable but cannot be integrated analytically
[A.M. Niknejad, TCAD'98]

Numerically Stable and Analytically Integrable Formula

replace the hyperbolic functions to exponential ones:

$$
\begin{gathered}
\cosh (x)=\frac{e^{x}+e^{-x}}{2}, \sinh (x)=\frac{e^{x}-e^{-x}}{2}, \\
Z_{m n}\left(z^{\prime}, z\right)=\frac{C_{m n}}{a b \varepsilon_{s} \gamma_{m n}} ; \frac{\left(\alpha_{s}^{u, l} e^{\gamma_{m n} z^{\prime}}+\beta_{s}^{u, l} e^{-\gamma_{m n} z^{\prime}}\right)\left(\alpha_{f}^{u, l} e^{\gamma_{m n} z}+\beta_{f}^{u, l} e^{-\gamma_{m n} z}\right)}{\alpha_{s}^{u} \beta_{s}^{l}-\alpha_{s}^{l} \beta_{s}^{u}}
\end{gathered}
$$

recursive procedure for the coefficients

Integration

$$
Z_{m n}\left(z^{\prime}, z\right) \mathrm{d} z=\frac{X}{\gamma_{m n}} j\left(\alpha_{f}^{u, l} e^{\gamma_{m m}}-\beta_{f}^{u, l} e^{-\gamma_{m n^{z}}}\right)
$$

Stability-Preserving Technique

- Instability:
$e^{\gamma_{m 4} t_{1-1}}$ overiflows when $\gamma_{m n}$ becomes large
- Solution:
- Define super complex number (hi_cplx)
- Re-define (overload) the operators (,,$+-{ }^{*}$,) $)$ to avoid the overflow.

Numerical Stability

High Resistivity

Low Resistivity
[J.P. Costa, TCAD'99]

Stable even when $m(=n)$ goes to extremely large (up to 1 million)

Coefficient-of-Potential Involving Sidewalls: $x y-y z$

$$
\begin{aligned}
& p_{i, j}=\frac{1}{S_{j} S_{i} S_{i} S_{j}} \quad G\left(x, x\left[, y, y\left[, z, z^{\prime}\right) d s_{i} d s_{j}\right.\right. \\
& \mathrm{d} s_{i}=\mathrm{d} x \mathrm{~d} y \quad \mathrm{~d} s_{j}=\mathrm{d} y \mathrm{~d} z
\end{aligned}
$$

> 32 terms
> - DCST (Discrete Cosine-Sine Transform)

All Positional Relations

DCST

- Consider totally 10 situations classified to 4 types
- For each situation, a Green's function should be computed and stored
- It required about 10X of that cost by ASITIC
- Can be reduced by applying non-uniform grid

Non-uniform Grid Method for Computing Green's Function

\bullet FFT \Longleftrightarrow uniform grid

- Computational amount $O\left(N^{2} \log \left(N^{2}\right)\right)$
- Memory required: $O\left(N^{2}\right)$ (N: FFT size, ~2000, increases with shrinking metal width)
- Non-uniform grid method have been developed (but not presented in the proceedings)
- Computational amount $O\left(M^{2} N_{c}^{2}\right)$
- Memory required: $O\left(N_{c}^{2}\right)$
- Nc: non-uniform grid size, <40; M: ~64 (constant)

Test Case I: Two contacts

	C11 (F)	Error (\%)	C12 (F)	Error (\%)
Ansys	$6.2520 \mathrm{e}-15$	--	$-1.5668 \mathrm{e}-15$	--
ASITIC	$5.0121 \mathrm{e}-15$	-19.8	$-9.7422 \mathrm{e}-16$	-37.8
SCAPE	$6.2573 \mathrm{e}-15$	-0.08	$-1.5752 \mathrm{e}-15$	0.54

Test Case II: k-by-k buses

Test case III: Interdigital Capacitor (IDC) over Lossy Substrate

$$
t_{\text {metal }}=2 \mu \mathrm{~m}
$$

Frequency dependence of the complex capacitance of the IDC.

Conclusion

-3-D capacitance extraction based on Green's function

- Stable and analytically integrable formula for the Green's function in z-direction
- Accurate result compared with well tested solvers (FastCap, Ansys, HFSS)
- Limitation: layered dielectric, Manhattan conductor

Thank you

