Parasitic Extraction Involving 3-D Conductors Based on Multilayered Green's Function

> Zuochang Ye and Zhiping Yu Institute of Microelectronics Tsinghua University Beijing, China

Abstract

- An algorithm for capacitance extraction based on Green's function involving 3-D conductors, considering multi-layered dielectric and lossy substrate
- An Improvement based on an algorithm implemented in ASITIC, for which the metal thickness cannot be included.
- A numerically stable and analytically integrable formula for the Green's function in vertical direction is derived
- The Green's function is integrated over the sidewalls
- The coefficient of potential is efficiently calculated by looking up the table of DCT, DCST and DST

Outline

- Background
- DCT based Green's function method
- Our algorithm
- Result and Comparison
- Conclusion

Capacitive Parasitic Extraction Based on BEM

$\mathbf{P}\mathbf{q} = \mathbf{v}$

- Computing the coefficient-of-potential P_{ij}
 - Free space method (Direct BEM)
 - Green's function method
- Solving the equation Pq=v
 - LU decomposition

. . .

- <u>Fast Multi-pole Method</u> (J. White, MIT)
- <u>Singular Value Decomposition (S. Kapur, Bell Lab)</u>
- Hierarchical Method (W. Shi, TAMU)
- <u>Quasi Multiple Media (W. Yu, THU)</u>

kernel independent

Advantages of Green's Function Method

Direct BEM method

- Discretize the interfaces between each adjacent dielectrics
- A Large number of variables

Green's function method

- Layout independent Green's function for technology is solved first
- Dielectric information is included in the Green's function
- Only conductors need to be discretized
- Limited to some certain profiles.

DCT Based Green's Function Method

- Based on multi-layered Green's function
- First proposed by R. Gharpurey in 1996 to analyze the effect of substrate coupling
- Numerically stabilized by A.M. Niknejad in 1998
- Developed to an academic software, ASITIC, which can simulate all kinds of passive elements.
- Conductors are assumed to be <u>infinitely thin</u>, *i.e.*, the thickness is ignored
- Direct extending to 3-D meets problems

[R. Gharpurey, CICC'96]

[A.M. Niknejad, TCAD'98]

Metal thickness

- Metal width and spacing are getting smaller and smaller, while the thickness is not reducing, sometimes even increases.
- Metal thickness should be considered.

Boundary Conditions and Green's Function

 $4 G(r',r) = -\frac{\delta(r-r')}{c}$ $\overline{G} = \overline{X(x', x)}\overline{Y(y', y)}\overline{Z(z', z)}$ $\dot{\varepsilon} = \varepsilon + \frac{\sigma}{i\omega}$ (complex permittivity) $X(x',x) = \cos(\frac{m\pi}{a}x')\cos(\frac{m\pi}{a}x)$ $Y(x',x) = \cos(\frac{n\pi}{h}y')\cos(\frac{n\pi}{h}y)$ t_N Z(z',z) subjects to: \mathcal{E}_N field • $Z^l_{m k}(z')=Z^{m u}_{m k}(z')$ t_1 $\frac{\mathrm{d}Z_k}{\mathrm{d}z} \Big|_{z'-\delta_m}^{z'+\delta_m} = -\frac{C_{mn}}{ab\epsilon_k}$ $\varphi = 0$ at z = 0• source t_0 $|Z_k|_{z=z_k} = Z_{k-1}|_{z=z_k}$ $\frac{\partial \varphi}{\partial p} = 0$ on \mathcal{E}_0 $\epsilon_k \frac{\mathrm{d}Z_k}{\mathrm{d}z} \Big|_{z=z_k} = \epsilon_{k-1} \frac{\mathrm{d}Z_{k-1}}{\mathrm{d}z} \Big|_{z=z_k}$ z = 0other surfaces $Z_0|_{z=0}=0$

 $\frac{\mathrm{d}\mathbf{Z}_{\mathbf{N}}}{\mathrm{d}\mathbf{z}}\Big|_{\boldsymbol{z}=\boldsymbol{z}_{\boldsymbol{N}+1}}=\mathbf{0}$

[R. Gharpurey, CICC'96]

Integration for the Coefficient of Potential

Green's function

For Sidewall Panels...

Gharpurey'96 (original one)

$$Z_{mn}(z',z) = \frac{f_{mn}(z')}{\beta_s^{\ u}\Gamma_s^{\ l} - \beta_s^{\ l}\Gamma_s^{\ u}} \bar{7} \overset{(u,l)}{\not \beta_s^{\ u}\Gamma_s^{\ l} - \beta_s^{\ l}\Gamma_s^{\ u}} \bar{7} \overset{(u,l)}{\not \beta_s^{\ u,l}} \underline{\cosh(\gamma_{mn}z)} + \Gamma_f^{\ u,l} \underline{\sinh(\gamma_{mn}z)}$$

numerically instable when γ_{mn} grows

♦ Niknejad'98 (resolved the numerical stability) $Z_{mn}(z',z) = \frac{4F_k^l(z_f,z_s)}{ab\varepsilon_k\gamma_{mn}} \text{ iff] } (\text{ iff } \text{I} \frac{\cosh(\vartheta_f - \vartheta_f)\cosh(\vartheta_f - \vartheta_{k+1})}{\cosh(\vartheta_f - \vartheta_k)}$ stable but cannot be integrated analytically

able but carmot be integrated analytically

[A.M. Niknejad, TCAD'98]

Numerically Stable and Analytically Integrable Formula

replace the hyperbolic functions to exponential ones: $e^{x} + e^{-x}$

$$\cosh(x) = \frac{e^{-r} + e^{-r}}{2}, \quad \sinh(x) = \frac{e^{-r} - e^{-r}}{2},$$

$$Z_{mn}(z',z) = \frac{C_{mn}}{ab\varepsilon_{s}\gamma_{mn}} \frac{1}{7} \frac{\left(\alpha_{s}^{u,l}e^{\gamma_{mn}z'} + \beta_{s}^{u,l}e^{-\gamma_{mn}z'}\right)\left(\alpha_{f}^{u,l}e^{\gamma_{mn}z} + \beta_{f}^{u,l}e^{-\gamma_{mn}z}\right)}{\alpha_{s}^{u}\beta_{s}^{l} - \alpha_{s}^{l}\beta_{s}^{u}}$$

recursive procedure for the coefficients

$$\overset{k}{\underset{m}{\mathfrak{g}}} \overset{l}{\underset{k}{\mathfrak{g}}} = \frac{1}{2} \overset{{\underset{m}{\mathfrak{g}}}(1+p_{k})e^{\gamma_{mn}t_{k-1}}}{\underset{m}{\mathfrak{g}}(1-p_{k})e^{\gamma_{mn}t_{k-1}}} \frac{(1-p_{k})e^{-\gamma_{mn}t_{k-1}}}{(1+p_{k})e^{\gamma_{mn}t_{k-1}}} \overset{{\underset{m}{\mathfrak{g}}}{\underset{k-1}{\mathfrak{g}}}$$

Integration

$$Z_{mn}(z',z)dz = \frac{X}{\gamma_{mn}} \overline{7} \left(\alpha_{f}^{u,l} e^{\gamma_{mn}z} - \beta_{f}^{u,l} e^{-\gamma_{mn}z} \right)$$

Stability-Preserving Technique

Instability:

- $e^{\gamma_{mn}t_{k-1}}$ overflows when γ_{mn} becomes large
- Solution:
 - Define super complex number (hi_cplx)

hi_cplx
$$z = ae^x \frac{a \ddagger \mathbf{C}}{x \ddagger \mathbf{R}}$$

Re-define (overload) the operators (+,-,*,/) to avoid the overflow.

🕻 tech	. ee [(cygdr i ve	e/e/Le	/svn/scap	e-d2/tech)	- GVIN	
<u>F</u> ile	<u>E</u> dit	Tools	<u>S</u> yntax	Buffers	<u>H</u> indow		Help
	24	୭୮୮	XDC	1 🖪 🛃 🗄	1 🕄 🎒 🛃	12	\$
1207 1208		lx::hi_	oplx(CPL)	(a_, dout	ole x_)		
1209 1210) a	i = a_; : = x_;					
1211	c	:heck();					
1212 1213							
1215	; {		;;check()				
1216 1217			= abs(a) 100.0); s < 1e-2)			
1218 1219			log(s);				
1220 1221		a /=					
1222	3						
1224	inlir	⊨ hi_cp	lx hi_cpl	lx::operat	.or*(hi_cpl	x b)	
1226) 🗍 h		t = *this	s; 🤇			
1227 1228	l t	a *= b x += b	.×:				
1229 1230		check(eturn t					
1231 1232							
1233 1234		⊯ hi_op	lx hi_cp.	lx::operat	.or/(hi_cpl	х b)	
1235 1236	i h	ni_oplx [.] a /= b	t = *this a*	8;			
1237 1238	't	x -= b check(.×:				
1239		eturn t					
1240 1241							
1242 1243		⊫ hi_cp	lx hi_cp.	Ix::operat	.or+(hi_cpl	x b)	

Numerical Stability

Low Resistivity

[J.P. Costa, TCAD'99]

Coefficient-of-Potential Involving Sidewalls: xy-yz

DCST (Discrete Cosine-Sine Transform)

All Positional Relations

- Consider totally 10 situations classified to 4 types
- For each situation, a Green's function should be computed and stored
- It required about 10X of that cost by ASITIC

 Can be reduced by applying non-uniform grid

Non-uniform Grid Method for Computing Green's Function

- Computational amount $O(N^2 \log(N^2))$
- Memory required: O(N²) (N: FFT size, ~2000, increases with shrinking metal width)
- Non-uniform grid method have been developed (but not presented in the proceedings)
 - Computational amount $O(M^2 N_c^2)$
 - Memory required: $O(N_c^2)$
 - Nc: non-uniform grid size, <40; M: ~64 (constant)</p>

Test Case I: Two contacts

	C11 (F)	Error (%)	C12 (F)	Error (%)
Ansys	6.2520e-15		-1.5668e-15))
ASITIC	5.0121e-15	-19.8	-9.7422e-16	-37.8
SCAPE	6.2573e-15	-0.08	-1.5752e-15	0.54

Test Case II: k-by-k buses

Test problem								
	2×2		4×4	5×5				
FastCap I (with fine mesh)								
CPU Time (s)	54	120	218	349				
Memory (MB)	111	131	160	197				
Panel #	7812	8724	9948	11492				
FastCap II (with coarse mesh)								
CPU Time (s)	11.6	19.1	31.1	46.6				
Memory (MB)	56	64	75	89				
Panel #	3628	4080	4684	5448				
Error (%)	2.89	2.84	2.85	2.76				
ASITIC								
Panel #	50	84	144	220				
Error (%)	23.7	24.8	25.8	25.4				
SCAPE								
CPU time (s)	0.32	1.14	3.41	8.39				
Memory (MB)	19	20	21	25				
Panel #	146	276	464	700				
Error (%)	0.99	0.91	1.60	2.38				

Green's function method does not need to discretize the interfaces of dielectrics

Test case III: Interdigital Capacitor (IDC) over Lossy Substrate

Conclusion

 3-D capacitance extraction based on Green's function

- Stable and analytically integrable formula for the Green's function in z-direction
- Accurate result compared with well tested solvers (FastCap, Ansys, HFSS)
- Limitation: layered dielectric, Manhattan conductor

Thank you