An Approach to Topology Synthesis of Analog Circuits Using Hierarchical Blocks and Symbolic Analysis

> Xiaoying Wang, Lars Hedrich University of Frankfurt, Germany

e-mail: wang@em.informatik.uni-frankfurt.de

Outline

- Introduction
- Topology generation
 - Hierarchical blocks
 - Synthesis rules
- Topology selection
 - Symbolic analysis
- Synthesis results
- Conclusion

Motivation

- Automatic design of analog circuits
 - Support for designer
 - Reduce time to market

- Exploration of structural design space
 - Find appropriate circuits methodically and systematically
 - Analyze and evaluate performances quickly

Hierarchical View of Circuits

- Sizing tools (e.g. WiCkeD)
- Topology synthesis, e.g.:
 - Rutenbar et al. (OASYS): topology library
 - Dastidar et al.: genetic algorithm
 - Our: rules-based algorithm

Hierarchical Topology Synthesis

- A set of well defined blocks with specialized signal information of terminals
- Synthesis rules for combination between blocks
- Block-chains/nets can represent the topology of circuits

- Type of signal: voltage (U) or current (I)
 - Current direction: determined by the bias current
- Type of terminal: *input* or *output*
- Impedance: low or high

Examples of blocks Differential pair

Current source

Current mirror (basic & cascode)

- General rules
 - Connection between two blocks
 - One dimension
- Current source rule
 - Adding Current source between two blocks
 - Quasi-one dimension
- Split & combination rules
 - Expanding the connection between blocks
 - Two dimensions

General rules

- Signal type rule
 - current to current, voltage to voltage

- Current rule
 - Matched bias current direction
 - Low input impedance of block B

- Voltage rule
 - High input impedance of block B

Current Source Rule

 Block A with current source can be treated as a block with either current or voltage output.

Split & Combination Rules

Combination rule (current)

U/I

Typical application area: differential pair

Topology Generation – Work Flow

Topology Selection – Symbolic Analysis

- Goal of topology selection
 - Reduce high number of synthesized circuits
 - Short run time
- Symbolic analysis
 - Fast performance estimation

 - Simple design equations \Rightarrow Initial sizing

Performance Estimation

- Linear performances
- Structural constraints
- Parameter dependencies given by symbolic expressions

Results – Unbuffered Op Amp (I)

- Op amp without a buffered output stage
- Terminal information:
 - Differential voltage input with high impedance
 - Voltage output with high impedance

Results – Unbuffered Op Amp (II)

Results – Unbuffered Op Amp (III)

1 of 50 results: block-net

Schematic

Estimated performances

- gain = 81.3 dB
- f_c = 1.01MHz,
- $R_{out} = 5M\Omega$

Conclusion

A new concept of circuit synthesis

- Exhaustive exploration of structural space with respect to
 - Predefined hierarchical blocks
 - Structural restrictions by rules
 - Limited size of block chain
- Symbolic analysis
 - Fast performance evaluation
- First results for standard linear circuits

Future work

- Circuit classes
 - Mixer, output stage
 - ...
- Automatic Sizing

Thank you!

