Statistical Corner Conditions of Interconnect Delay (Corner LPE Specifications)

K.Yamada and N.Oda

NEC Electronics Corporation Technology Foundation Op. Unit Core Development Division

Outline

Introduction ^{*}

- Statistical Corner Conditions in Single Layer
- Statistical Corner Correction between Layers
- Effects
- Conclusions

Basic Concept of Statistical ideas

Points on the Circle is necessary and sufficient.

Ordinary LPE Flow

One library is used for RC extraction of every design.

Conventional Corner Conditions

No statistical care, and over-margins are caused.

Problem of Conventional Corners (1)

To set all Process Parameters to Corner is too pessimistic !

What is difficult ? (1)

It is not clear,

- Where the delay corner points are.
- Number of corner points.

Problem of Conventional Corners (2)

To set all Layers to Corner is too pessimistic !

What is difficult ? (2)

Corner points can't be fixed in an ordinary method.

To solve these 2 problems by excluding the situations that are statistically unlikely to happen.

- To set all Process Parameters to Corner is too pessimistic
- To set all Layers to Corner is too pessimistic

Outline

- Introduction
- Statistical Corner Conditions in Single Layer
- Statistical Corner Correction between Layers
- Effects
- Conclusions

Implementation to Library Generator

- Process variations are defined in input cross-section.
- Corner conditions are automatically calculated.
- Library with statistical corner coefficients is generated.

Process Parameters

T, W : Treated Statistically
 D₁, D₂, ε : Treated Non-statistically

How to find Corner Points

Calculation of R, C and τpd along the circle.

Structures for R and C simulations

Typical patterns of signal lines in designs

Variations of R and C

 θ maximizing or minimizing R and C are constant: 30° or 210°

- → x1-pitch, case1
- x2-pitch, case1
- → x1-pitch, case2
- x2-pitch, case2

🔺 x4-pitch, case2

Circuit for τpd simulations

- Delay/1-stage of Inverter chain
 - Interconnect patterns
 - Interconnect pitch : x1, x2, x4
 - upper and lower layers exist or not
 - Interconnect length : 10um ~ 2mm
 - Inverter size : x1 ~ x32

Variations of τpd (1)

Inverter size dependence

• θ maximizing or minimizing τ pd are constant: 30° or 210°

Variations of τpd (2)

Interconnect pattern dependence

• θ maximizing or minimizing τ pd are constant: 30° or 210°

Variations of τpd (3)

Interconnect length dependence

• θ maximizing or minimizing τ pd are constant: 30° or 210°

Found Corner points

θ in W-T plane maximizing or minimizing τpd are constant : 30 ° and 210°

→ In general,

Corner Points = 2 angles (θ_1 and θ_2 (= θ_1 +180°))

Corner Conditions in Single Layer

- θ in W-T plane : 2 angles (θ_1 and θ_2)
- D_1 , D_2 , ϵ , R_{via} : Full-swing to maximize or minimize τpd

→ 2 x 2 = 4 corner conditions

Corner	W	Т	D ₁ , D ₂	3	R_{via}
Conditions					
RCmax	3cos (θ ₂) σ	$3sin(\theta_2) \sigma$	-3 σ	+3σ	+3σ
Cmax	$3\cos(\theta_1) \sigma$	$3sin(\theta_1) \sigma$	-3 σ	+3σ	+3σ
RCmin	$3\cos(\theta_1) \sigma$	$3sin(\theta_1) \sigma$	+3σ	- 3σ	- 3σ
Cmin	3cos (θ ₂) σ	$3sin(\theta_2) \sigma$	+3σ	- 3σ	-3 σ

 $(0 < \theta_1 < \theta_2 (= \theta_1 + 180^\circ) < 360^\circ)$

Schematic view of RC Library

- R and C at Center Condition
- Coefficients at Corner Conditions

Outline

- Introduction
- Statistical Corner Conditions in Single Layer
- Statistical Corner Correction between Layers
- Effects
- Conclusions

Implementation to RC Extraction

 RC extractor automatically dose "Statistical Corner Correction".

Concepts

Corner Correction for nodes composed of layers

Corner Correction

Corner coefficients are corrected to be closer to 1.

Center	Corner Condition without	Corner Condition with		
	Statistical Correction	Statistical Correction		
R1	$\beta_{R} 1 \cdot \mathbf{R} 1$	β _R 1' · R1		
C1	β_{C} 1 · C1	<mark>β</mark> c <mark>1</mark> ' · C1		
R2	$\beta_{R} 2 \cdot \mathbf{R} 2$	β _R 2' · R2		
C2	$\beta_{C}^{2} \cdot C^{2}$	β _C 2' · C2		

Calculations of γ

- Each layer's length is used for approximate calculation
 - Two assumptions are set ;
 - Capacitance for each unit length is constant.
 - Coefficient of the corner condition (β) is constant.

Outline

- Introduction
- Statistical Corner Conditions in Single Layer
- Statistical Corner Correction between Layers
- Effects *****
- Conclusions

Effect: Corner Conditions in Single Layer

About x0.7 Corner Width reduction (1 -> 1/2^{1/2})

Effect: Corner Correction between Layers

About x0.7 Corner Width reduction

Total Effects

- Corner Conditions in Single Layer
 -> Corner width reduction : x0.7
- Corner Correction between Layers
 - -> Corner width reduction : x0.7

... Total Corner width reduction : x0.5

- Reduction of power consumption
- Full advantage of process technology in its performance.

Outline

- Introduction
- Statistical Corner Conditions in Single Layer
- Statistical Corner Correction between Layers

K

- Effects
- Conclusions

Conclusions

- Statistical Ideas are newly introduced to the corner conditions for interconnect RC extraction
 - Statistical corner conditions in a single layer
 - Statistical corner correction between layers
- Proposed method is ready for implementation to LPE tools
- Guard-band width from the fast corner to the slow corner decreases by half