Speed Binning Aware Design Methodology to Improve Profit under Parameter Variation

January 27, 2006

Presenter: Kunhyuk Kang

Authors: Animesh Datta, Swarup Bhunia*, Saibal Mukhopadhyay, Jung Hwan Choi, and Kaushik Roy

Dept. of ECE, Purdue University, IN, USA

* Dept. of EECS, Case Western Reserve University

Outline

- Introduction
- Speed-binning aware weighted-yield model
- Gate-sizing technique to improve design profitability
- Profit-aware bin boundary placement
- Integrated profit-aware statistical design method
- Conclusions

Process Variation Issues

Speed-Binning

What is speedbinning?

- Test and classify each functionally correct chip to different bins
- Why speed-binning?
 - > Improves design profit
 - Salvages low performing chips

How design methodology can be improved to take advantage of speed-binning?

Motivation

Yield optimized design => Higher Y_{effective}
 Design with higher spread => Y_{effective}
 commercial value

Variability can increase profit under nonlinear price-profile

Profit Aware Weighted-Yield

Price-weighted yield (Y_P)

$$Y_P = \bigotimes_{i=1}^{N} C(T_i) Y_{bin_i}, \quad Y_P = \bigotimes_{i=1}^{N} w_i Y_i$$

- Different price-profiles
 - Linear
 - Quadratic
 - Exponential

Bin-Aware Statistical Circuit Design

Use binning price profile information during design optimization

Bin-aware circuit design optimization under a price profile

Maximize
$$Y_P = \sum_{i=1}^{N} C(\frac{1}{T_i}) Y_i = Profit-estimate$$
N: Bins; n: gatesSubject to: $A = \sum_{i=1}^{n} x_i < A_{init} + \Delta A$ X: size factor of gate

Profit-Aware Design

Profit-Aware Up/down Sizing

Delay Distribution Change

Exponential bin pricing

•
$$T_{\text{leakage}} = \mu - 2.5\sigma$$

• c2670 circuit

- Circuit delay distribution change by bin-aware sizing
- Profit optimized design has 9.1% higher Y_P

Experimental results

Average profit improvement over ISCAS85 benchmarks

- 8% P_{Improv} even at 95% yield
- P_{Improv} increases with Y_{initial}
- P_{Improv}: a weak function of T_{leakage}

- 70nm BPTM
- On average $A_{th} \sim 0.3\%$ of $A_{initial}$
- N_{bin}(3), Y_{init}(90%), T_{leakage}($\mu 2.5$ g

Profit Improvement for Different N

- Profit improvement is circuit topology dependent
- With N_{Bin} fine grained bin-aware optimization is possible

How the choice of bin-boundaries affects the profit improvement ?

Optimal Bin Boundary Placement

Iteratively optimized T_i for maximizing Y_P form the highest frequency bin \rightarrow Largest change in Y_P

$$P_{old} = P(T_0, T_1, ..., T_N, \mu, \sigma) = \prod_{i=1}^{N} Y_i C(1/T_i)$$

$$P_{new+} = P(..., T_i + dT, ..., T_N, \mu, \sigma)$$

$$P_{new-} = P(..., T_i - dT, ..., T_N, \mu, \sigma)$$

Avg. 5% P_{Improv} for Expo profile without any change in design for each T_i (0 < i < N) $dP + = P_{new+} - P_{old};$ $dP- = P_{new} - P_{old};$ if (dP + > 0) $T_i = T_i + dT;$ else if (dP- > 0) $T_i = T_i - dT;$ end if end for

Simultaneous Sizing and Bin Placement

Integrated Bin-Aware Design

- Initial equal bin boundaries (T_i) are near optimal for Lin. profile
- Initial T_i's are not optimal for Quad. profile
- Consistent profit improvement with increasing N

Conclusions

- Proposed an price-weighted yield model
- Developed an efficient sizing methodology that consider speed-binning price profile in design phase
- Proposed bin-aware design scheme can optimize large scale circuits to improve weighted yield by 19% with small runtime

Proposed a circuit optimization scheme leverages benefit of the increased variations in the scaled technology

Thank you

Contact author: Animesh Datta (adatta@purdue.edu)

Bin-Aware Sizing Routine Runtime

- Runtime of the algorithm is circuit topology dependent
 Proposed algorithm takes
- 0.12 secs for c74L85 (33 gates)
- 15 min. for c6288 (2503 gates) ISCAS85 circuits.

Avg. runtime over ISCAS85 benchmarks : 18.45 sec M/C Specs: Linux server, 3.06 GHz Pentium Xeon, 2GB RAM

- Sensitivity computation \rightarrow expensive in runtime
- Number of up/down sizing iterations : 4~8 (ISCAS85)