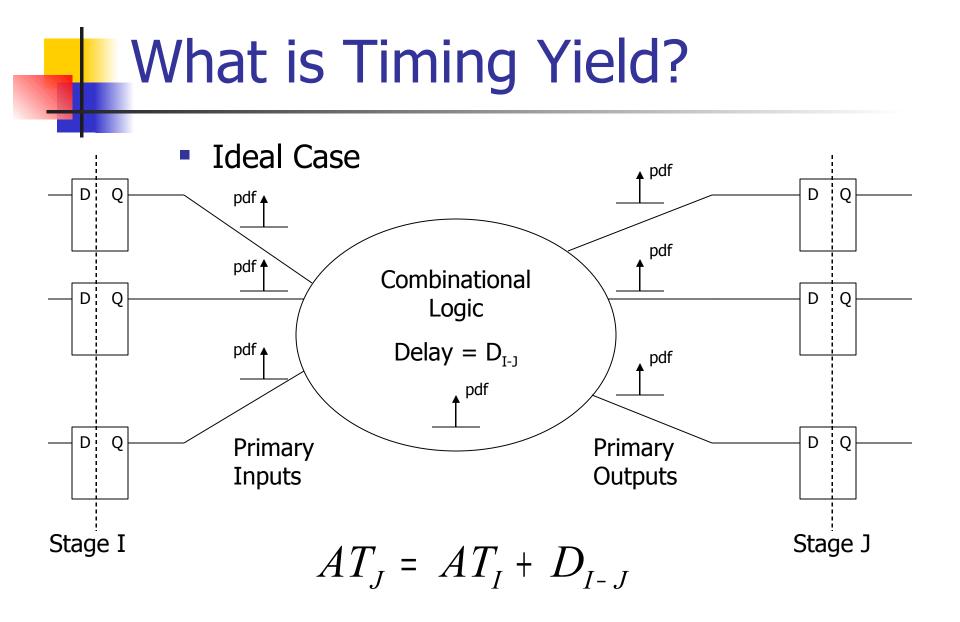
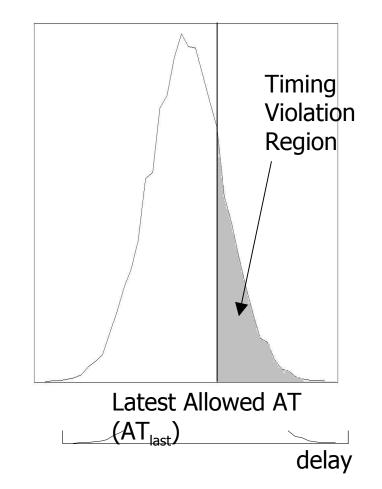
Yield-Area Optimizations of Digital Circuits Using Non-dominated Sorting Genetic Algorithm (YOGA)


Vineet Agarwal & Dr. Janet M. Wang Digital VLSI Design Laboratory Electrical & Computer Engineering Department University of Arizona Speaker: Vineet Agarwal

- Introduction Timing Yield
- Previous Work Gate Sizing
- Disadvantages of Previous Techniques
- Yield Optimization by Genetic Algorithm
  - Non-Dominated Sorting Genetic Algorithm
- Experimental Results
- Conclusion

# What is Timing Yield?


- Timing is an important Factor in synchronized circuit
- Arrival times (AT) at Primary output have an upper bound called Latest Arrival Time
- Ideally, AT are deterministic and can be computed as

$$AT_J = AT_I + D_{I-J}$$

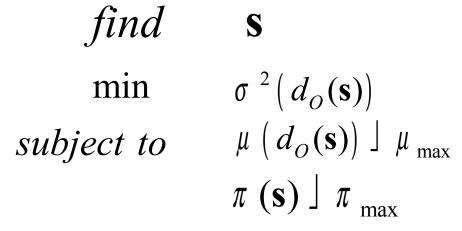


# What is Timing Yield?

- But delay of Combinational Logic is not deterministic
- Process variations up to 10-15%
- Results in 'spreading' of Arrival Time Probability Distribution Function (*pdf*)
- Larger Variation implies larger spread

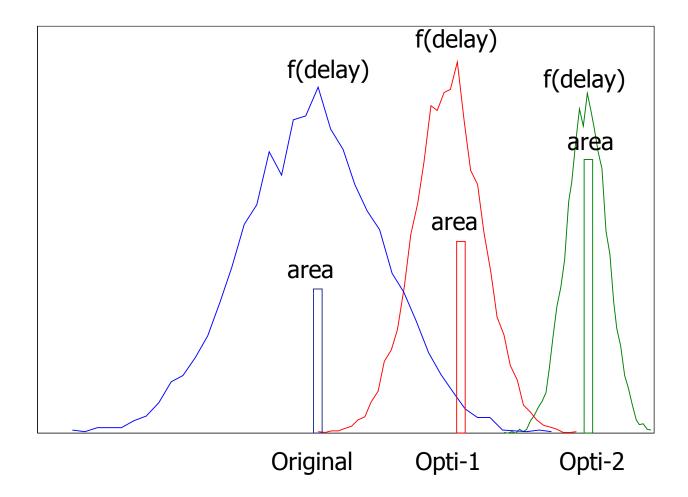


# What is Timing Yield?


- Solution Decrease Timing Variation at the Primary Outputs
- An effective solution is GATE SIZING

- Introduction Timing Yield
- Previous Work Gate Sizing
- Disadvantages of Previous Techniques
- Yield Optimization by Genetic Algorithm
  - Non-Dominated Sorting Genetic Algorithm
- Experimental Results
- Conclusion

# Previous Work – Gate Sizing


- Larger Gate implies lesser % variation
- Variation cannot be removed completely due to presence of random fluctuations but its effect can be subsided considerably
- Theory Gate Sizes can be scaled selectively to reduce overall variation
- Previous Technique Constrained Single-Objective optimization

### Gate Sizing Optimization



**S** - Solution Gate Size Vector  $\sigma^2(d_o(\mathbf{s}))$  - Output delay variance  $\mu(d_o(\mathbf{s}))$  - Output delay mean  $\pi(\mathbf{s})$  - Circuit Area

#### Gate Sizing Demonstration



- Introduction Timing Yield
- Previous Work Gate Sizing
- Disadvantages of Previous Techniques
- Yield Optimization by Genetic Algorithm
  - Non-Dominated Sorting Genetic Algorithm
- Experimental Results
- Conclusion

#### Disadvantages

- Provides only 1 solution
- User (Constraint) Dependent
- Fails to perform under too stringent condition
- Quality of final solution may depend on choice of starting point
- For optimizing in multi-domain, same procedure has to be repeated sequentially
- If sequential procedure is adopted, optimization in step 2 can cause the objective of step 1 to deteriorate

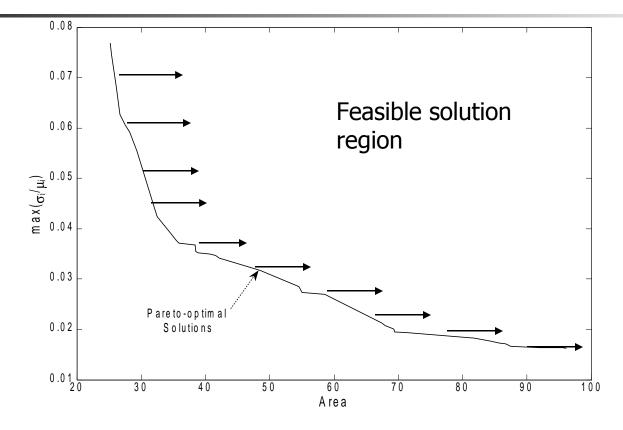
- Introduction Timing Yield
- Previous Work Gate Sizing
- Disadvantages of Previous Techniques
- Yield Optimization by Genetic Algorithm
  - Non-Dominated Sorting Genetic Algorithm
- Experimental Results
- Conclusion

# Yield Optimization by Genetic Algorithm (YOGA)

- Overcomes the previous disadvantages
  - Provides more than 1 solution of equal quality (pareto-optimal)
  - Final solutions independent of initial starting points
  - More flexibility at the user end
  - User Constraint Independent
  - Optimizes Multi-objectives simultaneously
  - Visual trade-off for more prudent choice
- Based on Non-Dominated Sorting Genetic Algorithm (NSGA)

Non-Dominated Sorting Genetic Algorithm (NSGA)

- Starts with absolutely random solutions
- Converges to Pareto-optimal solutions
- Follows Same principle as Genes follow in natural world


### **Pareto-optimal Solution**

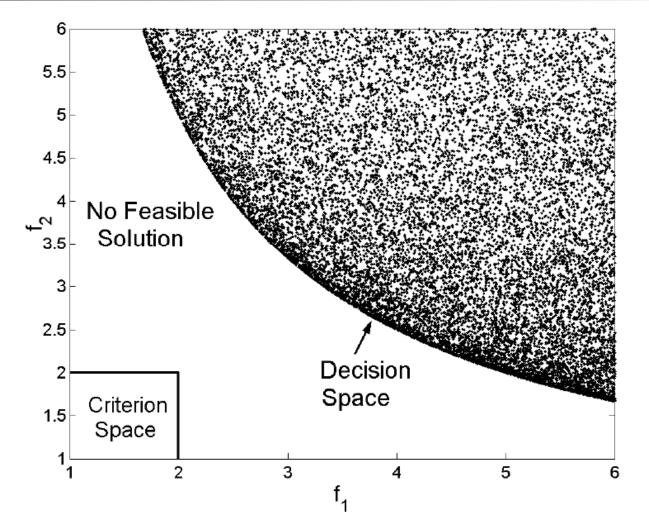
- Definition A solution is called *Pareto-optimal* solution, if there exist no other solution for which at least one of its criterion has a better value while values of remaining criteria are the same or better.
- In other words, one can not improve any criterion without deteriorating a value of at least one other criterion.

If *x*\* is a pareto-optimal solution and for any *i if* 

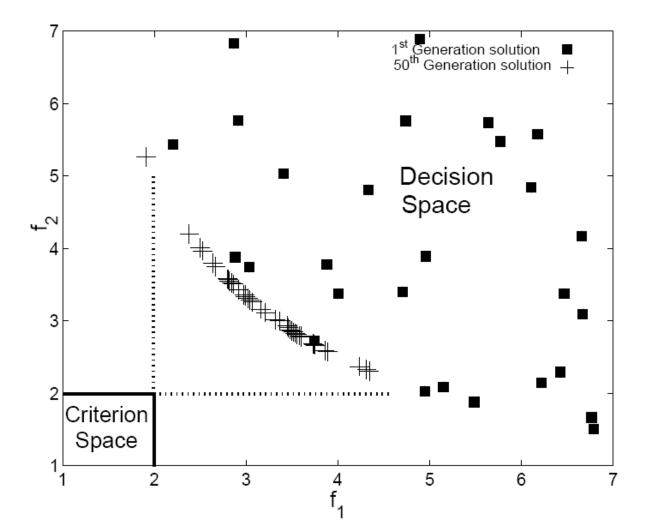
 $f_1(x_i) < f_1(x^*) - f_2(x_i) > f_2(x^*)$ 

#### **Pareto-optimal Solution**




 YOGA generates such pareto-optimal solutions

#### **NSGA - Demonstration**


goal 
$$f_1 = 10x_1 \le 2 \equiv \min \langle f_1 - 2 \rangle$$
  
goal  $f_2 = \frac{10 + (x_2 - 5)^2}{10x_1} \le 2 \equiv \min \langle f_2 - 2 \rangle$   
Subject to  $\mathbb{F} \equiv (0.1 \le x_1 \le 1, 0 \le x_2 \le 10)$ 

- 2 objectives & single constraint
- No possible solution provided by sequential traditional single – objective optimization techniques

#### NSGA – Demonstration (2)



# NSGA – Demonstration (3)



# NSGA - Algorithm

#### Algorithm 1 NSGA Algorithm

 $pop \leftarrow GenerateInitialPopulation$ if generation  $\leq \max$  generation then  $rank \leftarrow NonDominatedRanking(pop)$   $fitness \leftarrow FitnessAssignment(pop,rank)$ for i = 1 to N step 2 do  $parent_1 \leftarrow Selection(pop,fitness)$   $parent_2 \leftarrow Selection(pop,fitness)$   $(child_1, child_2) \leftarrow Crossover(parent_1, parent_2)$   $newpop_i \leftarrow Mutation(child_1)$   $newpop_{i+1} \leftarrow Mutation(child_2)$ end for

```
pop \leftarrow newpop

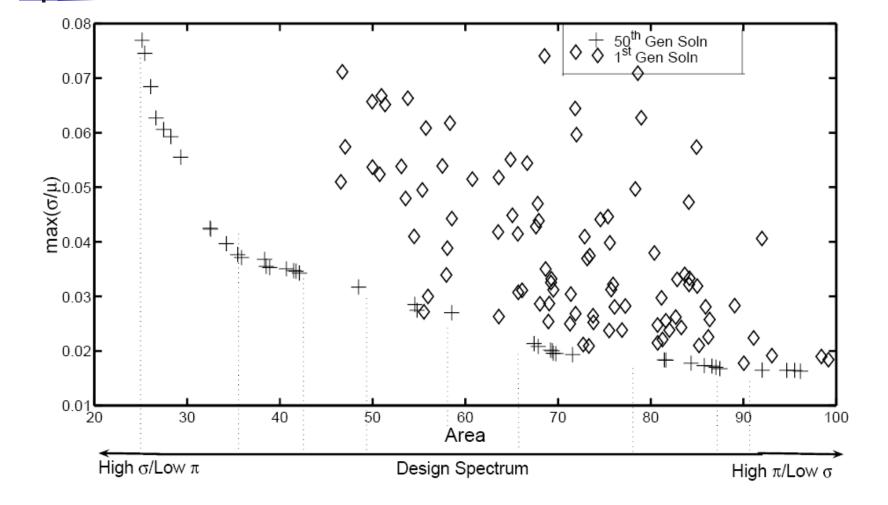
generation \leftarrow generation + 1

end if

final\_rank \leftarrow NonDominatedRanking(pop)

NonDominatedSolutions \leftarrow pop_i, \forall i \in final\_rank_i = 1

return NonDominatedSolutions
```




# $\begin{array}{ll} find & \mathbf{s} \\ Minimize & \max\left(\overrightarrow{\sigma}_{\mathcal{O}}/\overrightarrow{\mu}_{\mathcal{O}}\right) \\ Minimize & \pi\left(\mathcal{G}\right) \\ Subject \ to & s_{j}^{L} \leq s_{j} \leq s_{j}^{U}, \quad \forall j \in [1, N], \ g_{j} \in \mathcal{G} \end{array}$

- NSGA concentrated on convergence of Paretooptimal solutions
- YOGA concentrates on divergence of such set to provide wide range of solutions

- Introduction Timing Yield
- Previous Work Gate Sizing
- Disadvantages of Previous Techniques
- Yield Optimization by Genetic Algorithm
  - Non-Dominated Sorting Genetic Algorithm
- Experimental Results
- Conclusion

# YOGA – Experimental Results c17 – ISCAS Benchmark



#### YOGA – Experimental Results – Run Time – ISCAS Benchmark

| Circuit<br>Name | No. of<br>Gates | Run<br>time (s) | Circuit<br>Name | No. of<br>Gates | Run<br>time (s) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C17             | 6               | 4.42            | C432            | 160             | 43.43           |
| C499            | 202             | 51.37           | C880            | 383             | 94.25           |
| C1355           | 546             | 137.18          | C1908           | 880             | 227.20          |
| C2670           | 1193            | 341.68          | C3540           | 1669            | 470.75          |

- Introduction Timing Yield
- Previous Work Gate Sizing
- Disadvantages of Previous Techniques
- Yield Optimization by Genetic Algorithm
  - Non-Dominated Sorting Genetic Algorithm
- Experimental Results
- Conclusion

# Conclusion

- Highlighted the shortcomings of previous techniques
- Proposed YOGA for choosing the best solution
- Provided more flexibility while design.
- Presented experimental results to support our claim

# Questions?



#### Contact Info: Vineet Agarwal Email: vagarwal@ece.arizona.edu