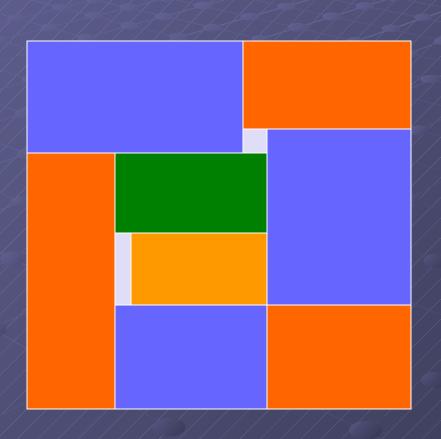
A Fixed-die Floorplanning Algorithm Using an Analytical Approach

Y. Zhan, Y. Feng, S. S. Sapatnekar
Department of Electrical and Computer
Engineering
University of Minnesota

Outline

- Background
- Problem formulation
- An analytical fixed-die floorplanning algorithm
- Experimental results
- Conclusions

Fixed-die Floorplanning Problem



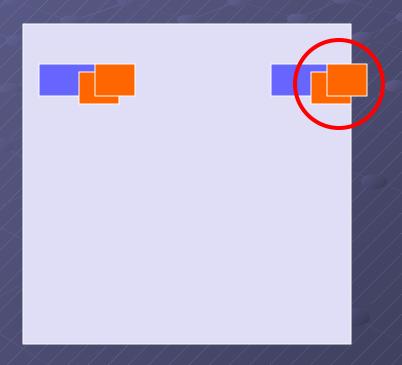
- Fixed outline
- Place and size the modules such that there is no overlap
- Minimize some delay metric, e.g., wire length

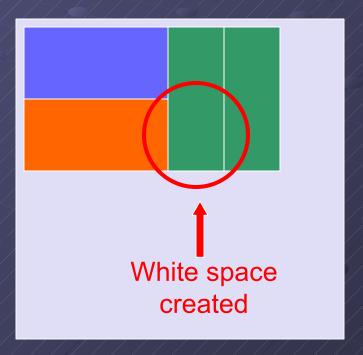
Previous Works

- Simulated annealing based approach
 - Adya and Markov, Trans. VLSI 2003
 - Chen and Chang, ISPD 2005
- Partition based approach
 - Cong, Romesis, and Shinnerl, ASPDAC 2005
- Analytical approach
 - Kahng and Wang, ISPD 2004 (Placement)

Difference between Placement and Floorplanning

- Significant difference in module width and height
- Large module size





Problem Formulation

Die Size L_x , L_y , Area and Max Aspect Ratio A_i , R_i

Connectivity between Modules

Analytical Floorplanner

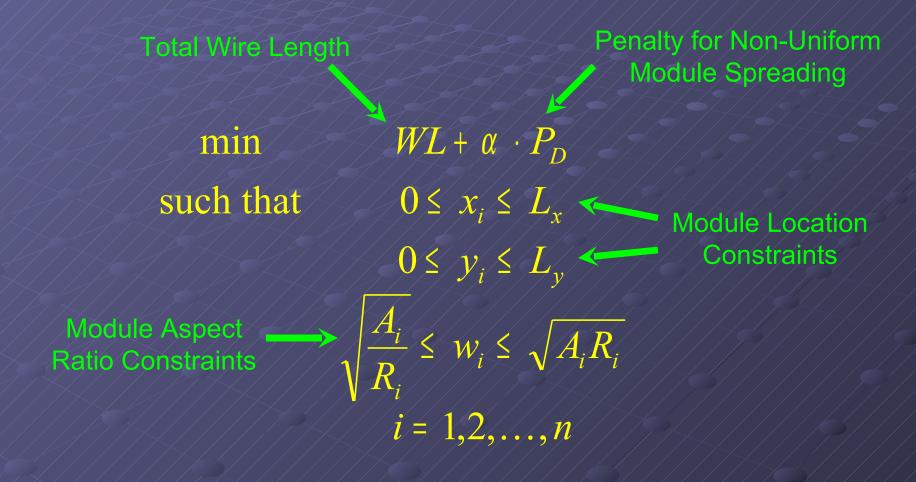
An Overlap Free Floorplan that Minimizes the Total Wire Length

Overall Floorplanning Procedure

Rough floorplanning to spread modules uniformly with good control of total wire length (ref: Kahng and Wang, ISPD 2004)

Optimization based overlap reduction and final legalization

Rough Floorplanning



Transformation to the Unconstrained Optimization Problem

min
$$WL + \alpha \cdot P_D$$

such that $0 \le x_i \le L_x$
 $0 \le y_i \le L_y$
 $\sqrt{\frac{A_i}{R_i}} \le w_i \le \sqrt{A_i R_i}$
 $i = 1, 2, ..., n$

$$\min WL + \alpha \cdot P_D + \beta \cdot B$$

Barrier Term

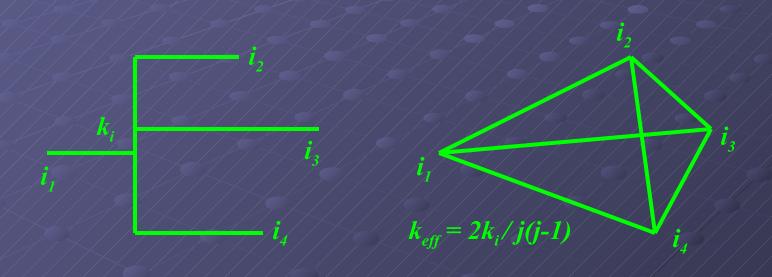
$$B = \sum_{i=1}^{n} \frac{1}{x_{i}} + \sum_{i=1}^{n} \frac{1}{L_{x} - x_{i}}$$

$$+ \sum_{i=1}^{n} \frac{1}{y_{i}} + \sum_{i=1}^{n} \frac{1}{L_{y} - y_{i}}$$

$$+ \sum_{i=1}^{n} \frac{1}{w_{i} - \sqrt{A_{i}}} + \sum_{i=1}^{n} \frac{1}{\sqrt{A_{i}R_{i}} - w_{i}}$$

Calculation of the Total Wire Length

Clique model and quadratic wire length



$$WL = \sum_{i,j} k_{ij} [(x_i - x_j)^2 + (y_i - y_j)^2]$$

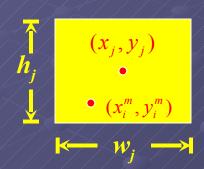
Calculation of the Module Spreading Term

$$P_D = \sum_{i \in C_{in}} (D_i - \overline{D})^2 + \sum_{i \in C_{out}} D_i^2$$

$$\overline{D} = (\sum_{i=1}^{n} A_i)/(L_x L_y)$$

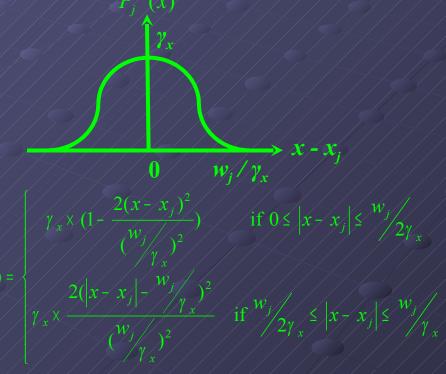
$$D_i = \sum_{j=1}^{n} \widetilde{P}_j(x_i^m, y_i^m)$$

$$D_i = \sum_{j=1}^n \widetilde{P}_j(x_i^m, y_i^m)$$

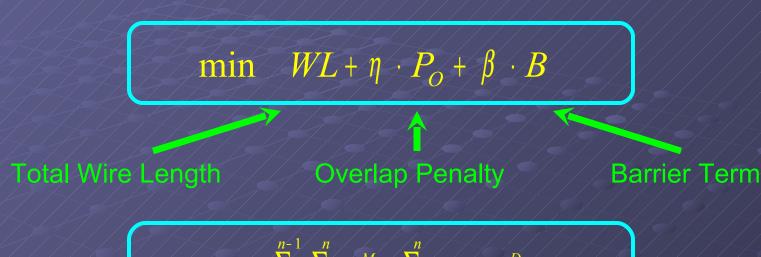


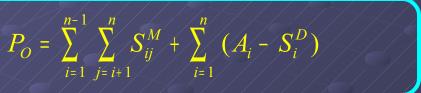
$$\widetilde{P}_{j}(x,y) = \widetilde{P}_{j}^{X}(x) \times \widetilde{P}_{j}^{Y}(y)$$

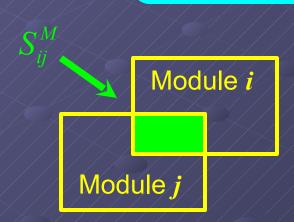
Kahng and Wang, ISPD 2004



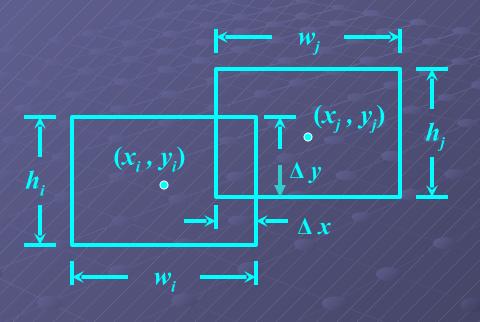
Overlap Reduction

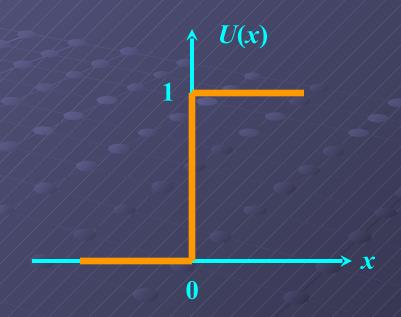






Calculation of the Overlap Area



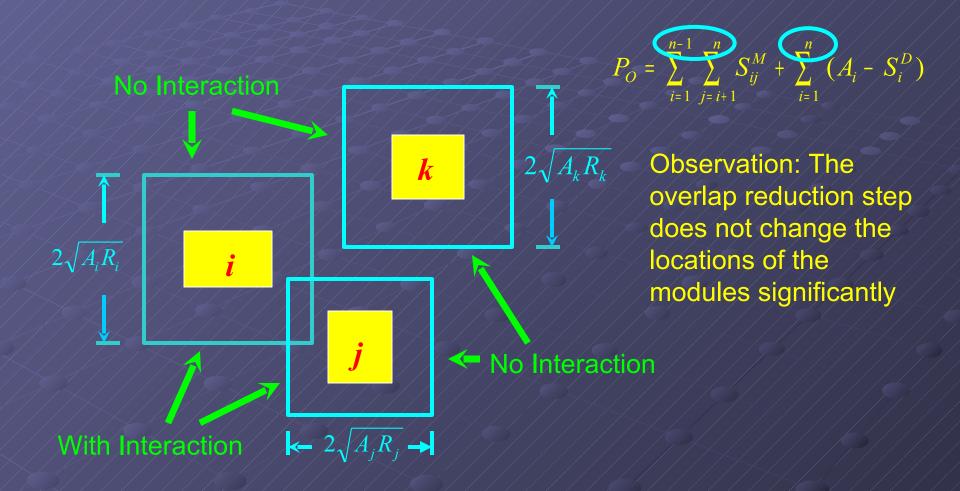


$$\Delta x = (\min\{x_i + 0.5w_i, x_j + 0.5w_j\} - \max\{x_i - 0.5w_i, x_j - 0.5w_j\})$$

$$\times U(\min\{x_i + 0.5w_i, x_j + 0.5w_j\} - \max\{x_i - 0.5w_i, x_j - 0.5w_j\})$$

$$\min\{x,y\} \approx \frac{x \cdot e^{k(y-x)} + y \cdot e^{k(x-y)}}{e^{k(x-y)} + e^{k(y-x)}}, \quad \max\{x,y\} \approx \frac{x \cdot e^{k(x-y)} + y \cdot e^{k(y-x)}}{e^{k(x-y)} + e^{k(y-x)}}, \quad U(x) \approx \frac{1}{2}(1 + \tanh(k'x))$$

A Useful Heuristic



Overall Procedure

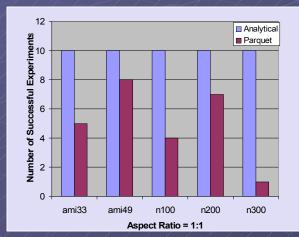
Rough Floorplanning Using Conjugate Gradient

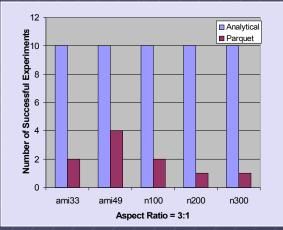
Overlap Reduction Using Conjugate Gradient

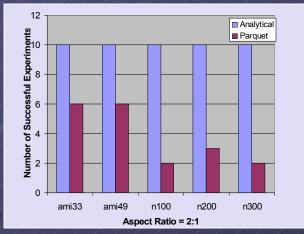
Final Legalization Using pl2sp() from Parquet

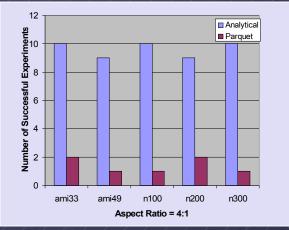
Experimental Results

Success rate over 10 experiments (15% white space)



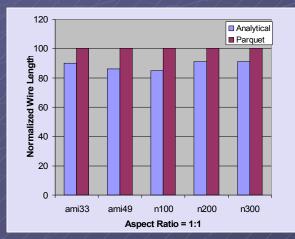


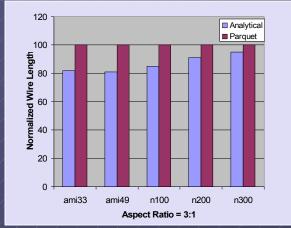


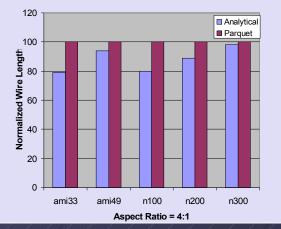


Experimental Results

Wire Length

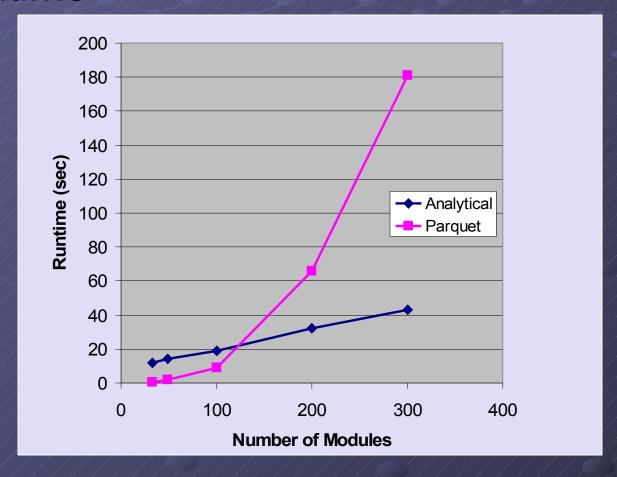






Experimental Results

Runtime



Conclusions

- An analytical floorplanning algorithm for soft modules presented
- High success rate, good wire length, and high efficiency demonstrated