A Multi-Technology-Process Reticle Floorplanner and Wafer Dicing Planner for Multi-Project Wafers

Chien-Chang Chen and Wai-Kei Mak

Department of Computer Science National Tsing Hua University

Trend of Mask cost

Cost (\$1000)

The mask cost is around \$700K dollars for 130 nm and \$1 million dollars for 90nm.

Intro. to Multi-Project Wafer

MPW provides a cost-sharing method for fast prototyping and low volume designs.

* Source from http://www.ruentex.com.tw/trend-web/files/img_htm/sun2.htm and http://foundry.zarlink.com/gifs/mpw.jpg

Intro. to Multi-Project Wafer

The procedure for manufacturing Multi-Project Wafer

wafer dicing plan

Intro. to Multi-Project Wafer

A die can be diced out successfully only when
 (1) the cut lines are along the margins of the die;
 (2) no cut lines are across the die.

{ h1, h2, h3, h4 } is a row dicing plan. { v1, v2, v3, v4 } is a column dicing plan. Only D1 and D4 are diced out.

Multi-Technology-Processes

Each design with the desired technology process, such as 1P4M (1 poly and 4 metal layers)

Problem Formulation

Given : (1) a set of *N* projects with their desired technology processes and demands
 (2) the maximum dimensions of a reticle
 (3) the wafer size

Objective : Find (1) a reticle floorplan, (2) a set of sideto-side wafer dicing plans in order to satisfy the demands of each project while minimizing the required wafers.

Conflict Situations

We say that two dies are in vertical (horizontal) conflict if no set of cut lines can dice the two dies simultaneously, otherwise the two dies are conflict-free.

D1 and D2 are in vertical conflict. D2 and D3 are in horizontal conflict. D1 and D3 are conflict-free.

Two dies of the same technology process are in conflictfree positions on a reticle can be diced out and produced simultaneously.

Observation 1: Even if two dies with different desired processes are conflict-free in the reticle floorplan, they still cannot be produced at the same time.

Observation 1: Even if two dies with different desired processes are conflict-free in the reticle floorplan, they still cannot be produced at the same time.

- Observation 1: Even if two dies with different desired processes are conflict-free in the reticle floorplan, they still cannot be produced at the same time.
 - Place the dies of the same technology process in conflict-free positions on the reticle.
 - Minimize the horizontal / vertical conflict situations for dies of the same technology process.

Observation 2: We can put multiple instances of the same die on a reticle during floorplanning depending on the demand of the die.

Variables of ILP-based Floorplanner

Assume a grid structure with p rows and q columns is imposed on the reticle.

- Xijk denotes whether die k is allocated to row i and column j or not.
- rk denotes whether die k is rotated or not.

Variables of ILP-based Floorplanner

• *row*^{*i*} denotes the height of row *i* in the grid.

•col_j denotes the width of column *j* in the grid.

•rci denotes the maximum number of the dies of the same technology process in row i. rco=1 and rc1=2

• cc_j denotes the maximum number of the dies of the same technology process in column j. cc₀=1 and cc₁=2

in $col_0 = 3.0$ $col_1 = 4.0$ $row_1 = 4.0$ $col_0 = 3.0$ $col_1 = 4.0$ (1P5M) $col_1 = 4.0$ (1P5M) (1P5M) (1P5M) 3.5 D2 (1P5M) (1P5M) 04 3.5 D4 3.5 (1P5M)(1P4M)

Constants of ILP-based Floorplanner

• *W_k*, *H_k*, *D_k* denote width, height, and demand of die *k* respectively, where $1 \le k \le N$.

• **Total_Dmd** denote the total demand of the dies, $Total_Dmd = \sum_{k=1}^{N} D_k$

• T_m denotes the set of dies which must be produced by the technology process 1PmM. $T_4 = \{D3\}$ and $T_5 = \{D1, D2, D4\}$

D1	D2	
(1P5M)	(1P5M)	
D3	D4	
(1P4M)	(1P5M)	

•*Rw*, *Rh* denote the given maximum width and height of the reticle.

Constraints of ILP-based floorplanner

There is at least one instance of each die type allocated to a grid cell.

$$\sum_{i=1}^{p} \sum_{j=1}^{q} x_{ijk} \ge 1 \qquad \forall k$$

At most one die allocated to each grid cell.

$$\sum_{k=1}^{N} x_{ijk} \leq 1 \qquad \forall i, j$$

Constraints of ILP-based floorplanner

The height (width) of each row (column) is calculated by the following conditions,

$$H_{k}(x_{ijk} - r_{k}) + W_{k}(x_{ijk} + r_{k} - 1) \leq row_{i} \quad \forall j$$

$$W_{k}(x_{ijk} - r_{k}) + H_{k}(x_{ijk} + r_{k} - 1) \leq col_{j} \quad \forall j$$

$$row_{i} \geq 0 \quad \forall j$$

$$col_{j} \geq 0 \quad \forall j$$

	X ijk	ľ k	LHS
case1	1	1	W k
case2	1	0	Hĸ
case3	0	1	<0
case4	0	0	<0

The sum of all row heights and the sum of all column widths are not greater than the given maximum dimensions

$$\sum_{i=1}^{p} row_{i} \leq Rh$$
$$\sum_{j=1}^{q} col_{j} \leq Rw$$

Constraints of ILP-based floorplanner

 Using the following conditions to calculate the maximum number of dies of the same technology process in row and column

$$\sum_{k \in Tm} \sum_{j=1}^{q} x_{ijk} \leq rc_i \qquad \forall i,m$$
$$\sum_{k \in Tm} \sum_{i=1}^{p} x_{ijk} \leq cc_j \qquad \forall j,m$$

D1	D2	
(1P5M)	(1P5M)	
D3	D4	
(1P4M)	(1P5M)	

Objective function of ILP-based floorplanner

min :
$$\sum_{i=1}^{p} rc_i + \sum_{j=1}^{q} cc_j = \sum_{k=1}^{N} \frac{D_k}{Total _Dmd} \sum_{i=1}^{p} \sum_{j=1}^{q} x_{ijk}$$

- (1) By minimizing the maximum number of dies of the same process in each row (column), we can maximize the number of conflict-free dies for the same process.
- (2) We can put more than one instance of a die type on the reticle according to its demand.

Candidate row/column dicing plans

Find all candidate row (column) dicing plans of technology process 1P4M

SA-based wafer dicing planner

- Using a simulated annealing-based approach with the following perturbations,
 - Exchange the row (column) dicing plans of two rows (columns) where the number of printed reticle images of the rows (columns) are not equal.
 - Change the row (column) dicing plan of a row (column)

We target to minimize the number of required wafers.

We used ten benchmarks as follows to evaluate our floorplanner and wafer dicing planner.

Benchmark	No. of die types	No. of technology processes	Max. reticle dimensions.
M1	10	4	15x15
M2	10	5	20x20
M3	14	4	20x20
M4	15	4	15x15
M5	15	4	20x20
M6	16	4	20x20
M7	18	4	20x20
M8	18	3	15x15
M9	20	5	20x20
M10	20	4	15x15

The experiments assuming that all die types using the same technology process

The maximum wafer reduction is 52% and average reduction is 30%.

The experiments considering the desired technology process of each die.

The maximum wafer reduction is 50% and average reduction is 28%.

We tried two mechanisms of wafer dicing for comparison.
 D1 : Use the same wafer dicing plan for the same technology process wafers.

D2 : Use different wafer dicing plan for each wafer.

Conclusions

- We considered the fact that each design has its own desired technology process.
- Our floorplanner incorporates die replication according to the demand of each die type.
- Our wafer dicing planner considered the circular shape of the wafer.
- The experimental results are better than a previous SA-based floorplanner.

Thank you !