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Problem Setup



  

Replication Setup



  

Current State of the Art

 All Useful, Balanced Optimization 
Functions NP-Hard

 Simple 2-Way Partitioning
 Optimal Solutions Available via Branch and 

Bound
 Suggest Fidducia-Matthyses Techniques 

Near Optimal
 But BB Results Only Scale to ~50 nodes



  

Current State of the Art
 Multiway Partitioning

 No published optimal results on VLSI 
netlists

 Synthetic netlist experiments
 Much larger solution space
 Typically solved via recursive bipartitioning

 Partitioning with Replication
 Optimal Techniques for Unbalanced Case

 Based on Network Flows
 Unknown Quality of Heuristics



  

What’s Missing?

 Optimal Solutions
 Multiway Partitioning
 Replication
 More “Realistic” Cost Functions

 Solutions Could Guide Heuristic 
Development

 Solve Practical Problems



  

Optimal Partitioning Algorithm 
Development

 Capo “Small” Partitioner
 Best available optimal partitioning tool
 2-way cut-hyperedges formulation
 Relies on pruning techniques applicable 

only to bipartitioning
 Not Clear How to Generalize Techniques 

to Multiway, Multiobjective, and 
Replication Formulations



  

Optimization vs. Decision 
Problems

 Any Optimization Problem Can Be 
Transformed into a Series of Decision 
Problems

while (upperBound > lowerBound) {
   thisTry = (upperBound + lowerBound) / 2
   if (existsSolution(this)) {
       upperBound = thisTry
   }
   else {
       lowerBound = thisTry
   }
}

Partitioning at Some Metric:
NP-Complete
Decision Problem



  

NP-Complete Problems
 Fundamental Property of NP-Complete 

Decision Problem:

 Can Transform An Instance from One 
Member of the Class to Another Within 
Polynomial Time and Space

 Offers Mechanism to Leverage 
Advances Between Problem Domains



  

Early SAT Partitioning
 S. Devadas, ICCAD1989

 Bipartitioning Formulation
 32 Node Netlists

 SAT Solvers & Hardware of 1989
 “An attractive feature of this approach is 

that the entire space of feasible solutions 
can be represented in a compact way, 
facilitating the search for optimal solutions 
under complex cost functions and 
associated constraints.”



  

SAT Solver Development
 Very Competitive Marketplace for SAT Solvers

 ICSAT Conference Annual Competition
 Standard Input Format

 Conjunctive Normal Form (Product of Sums)
 Trivial Output

 Fast 2005 Solver ~10x Faster than Fastest 
2004 Solver
 Not Atypical

 Practical to Solve Millions of Clauses



  

Our Formulation
 Build Problem as Traditional Logic Circuit
 For Every Node, Assign K Inputs (one for 

each partition)
 i.e. A1…Ak,B1…Bk , …
 Assert Exactly One of K Inputs Set (for now)
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Example Partitioning Problem

 3-Way Partition
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Components
 All Nodes Represented 

in A Partition
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Components
 Balance Condition

 Binary Counter and Comparators
 More Efficient Representation

 Bailleux and Boufkhad
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Cut Hyperedges
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Cardinality Constraints
 Key Component of Metrics, Balance Constraints
 Simplistic Counter Representation

Partial Assignment of Variables

Assertion 
on Outcome

Impossible to Recognize Contradiction



  

Cardinality Constraints
 Pre-Unate Representation

 Bailleux and Boufkhad, SAT2004
 Represent Cardinalities Of Max Size N 

with Bit Vectors of N bits
 Represent ‘k’ by setting first k bits
 Example:

 Max Value = 5
 Express 3 as: 11100



  

Pre-Unate Totalizer
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Pre-Unate Cardinality Constraints
 Recursively Decompose Cardinalities As Before 
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Pre-Unate Speedup

Typical Speedup 
of About 
an Order 
of Magnitude



  

Symmetry Breaking

 In General: K! Potential Symmetries
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Preassigning an Ordering
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Preassigning a ‘Weak’ Ordering
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Runtime: Misex2, 97 Nodes
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Comparison Against BB
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Adding Replication
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Replication Performance
 2 Partitions, Each 60% of Total Area



  

More Realistic Optimization 
Targets

 Sum of External Degrees
 Considers Total Number of Pins on 

Partitions
 Prefers Solutions Where Cut Edges Interact 

with Few Partitions
 Maximum Subdomain Degree

 Consider Maximum IO Into Any Partition
 Practical to Solve ~40 Node Netlists
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Future Directions

 Higher-K Partitioning
 More Aggressive Symmetry-Breaking
 Cost Objectives with Intrinsic Ordering of 

Partitions
 Hybrid Cost Functions

 Minimize(Cut Hyperedge Metric) &&
Maximal Subdomain Metric < x



  

Conclusions
 Practical SAT Based Formulation of 

Hypergraph Partitioning
 Multiway
 Replication
 Sophisticated Objective Functions

 Substantial Speedup Over an Existing Optimal 
Tool for Bipartitioning

 First Published Results for Replication, 
Multiway, and Realistic Objective Functions



  

Questions


