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Problem Setup



  

Replication Setup



  

Current State of the Art

 All Useful, Balanced Optimization 
Functions NP-Hard

 Simple 2-Way Partitioning
 Optimal Solutions Available via Branch and 

Bound
 Suggest Fidducia-Matthyses Techniques 

Near Optimal
 But BB Results Only Scale to ~50 nodes



  

Current State of the Art
 Multiway Partitioning

 No published optimal results on VLSI 
netlists

 Synthetic netlist experiments
 Much larger solution space
 Typically solved via recursive bipartitioning

 Partitioning with Replication
 Optimal Techniques for Unbalanced Case

 Based on Network Flows
 Unknown Quality of Heuristics



  

What’s Missing?

 Optimal Solutions
 Multiway Partitioning
 Replication
 More “Realistic” Cost Functions

 Solutions Could Guide Heuristic 
Development

 Solve Practical Problems



  

Optimal Partitioning Algorithm 
Development

 Capo “Small” Partitioner
 Best available optimal partitioning tool
 2-way cut-hyperedges formulation
 Relies on pruning techniques applicable 

only to bipartitioning
 Not Clear How to Generalize Techniques 

to Multiway, Multiobjective, and 
Replication Formulations



  

Optimization vs. Decision 
Problems

 Any Optimization Problem Can Be 
Transformed into a Series of Decision 
Problems

while (upperBound > lowerBound) {
   thisTry = (upperBound + lowerBound) / 2
   if (existsSolution(this)) {
       upperBound = thisTry
   }
   else {
       lowerBound = thisTry
   }
}

Partitioning at Some Metric:
NP-Complete
Decision Problem



  

NP-Complete Problems
 Fundamental Property of NP-Complete 

Decision Problem:

 Can Transform An Instance from One 
Member of the Class to Another Within 
Polynomial Time and Space

 Offers Mechanism to Leverage 
Advances Between Problem Domains



  

Early SAT Partitioning
 S. Devadas, ICCAD1989

 Bipartitioning Formulation
 32 Node Netlists

 SAT Solvers & Hardware of 1989
 “An attractive feature of this approach is 

that the entire space of feasible solutions 
can be represented in a compact way, 
facilitating the search for optimal solutions 
under complex cost functions and 
associated constraints.”



  

SAT Solver Development
 Very Competitive Marketplace for SAT Solvers

 ICSAT Conference Annual Competition
 Standard Input Format

 Conjunctive Normal Form (Product of Sums)
 Trivial Output

 Fast 2005 Solver ~10x Faster than Fastest 
2004 Solver
 Not Atypical

 Practical to Solve Millions of Clauses



  

Our Formulation
 Build Problem as Traditional Logic Circuit
 For Every Node, Assign K Inputs (one for 

each partition)
 i.e. A1…Ak,B1…Bk , …
 Assert Exactly One of K Inputs Set (for now)
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Example Partitioning Problem

 3-Way Partition
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Components
 All Nodes Represented 

in A Partition
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Components
 Balance Condition

 Binary Counter and Comparators
 More Efficient Representation

 Bailleux and Boufkhad
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Cut Hyperedges
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Cardinality Constraints
 Key Component of Metrics, Balance Constraints
 Simplistic Counter Representation

Partial Assignment of Variables

Assertion 
on Outcome

Impossible to Recognize Contradiction



  

Cardinality Constraints
 Pre-Unate Representation

 Bailleux and Boufkhad, SAT2004
 Represent Cardinalities Of Max Size N 

with Bit Vectors of N bits
 Represent ‘k’ by setting first k bits
 Example:

 Max Value = 5
 Express 3 as: 11100



  

Pre-Unate Totalizer
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Pre-Unate Cardinality Constraints
 Recursively Decompose Cardinalities As Before 
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Pre-Unate Speedup

Typical Speedup 
of About 
an Order 
of Magnitude



  

Symmetry Breaking

 In General: K! Potential Symmetries
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Preassigning an Ordering
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Preassigning a ‘Weak’ Ordering
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Runtime: Misex2, 97 Nodes
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Comparison Against BB
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Adding Replication
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Replication Performance
 2 Partitions, Each 60% of Total Area



  

More Realistic Optimization 
Targets

 Sum of External Degrees
 Considers Total Number of Pins on 

Partitions
 Prefers Solutions Where Cut Edges Interact 

with Few Partitions
 Maximum Subdomain Degree

 Consider Maximum IO Into Any Partition
 Practical to Solve ~40 Node Netlists
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Future Directions

 Higher-K Partitioning
 More Aggressive Symmetry-Breaking
 Cost Objectives with Intrinsic Ordering of 

Partitions
 Hybrid Cost Functions

 Minimize(Cut Hyperedge Metric) &&
Maximal Subdomain Metric < x



  

Conclusions
 Practical SAT Based Formulation of 

Hypergraph Partitioning
 Multiway
 Replication
 Sophisticated Objective Functions

 Substantial Speedup Over an Existing Optimal 
Tool for Bipartitioning

 First Published Results for Replication, 
Multiway, and Realistic Objective Functions



  

Questions


