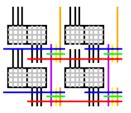
SAT-Based Optimal Hypergraph Partitioning with Replication

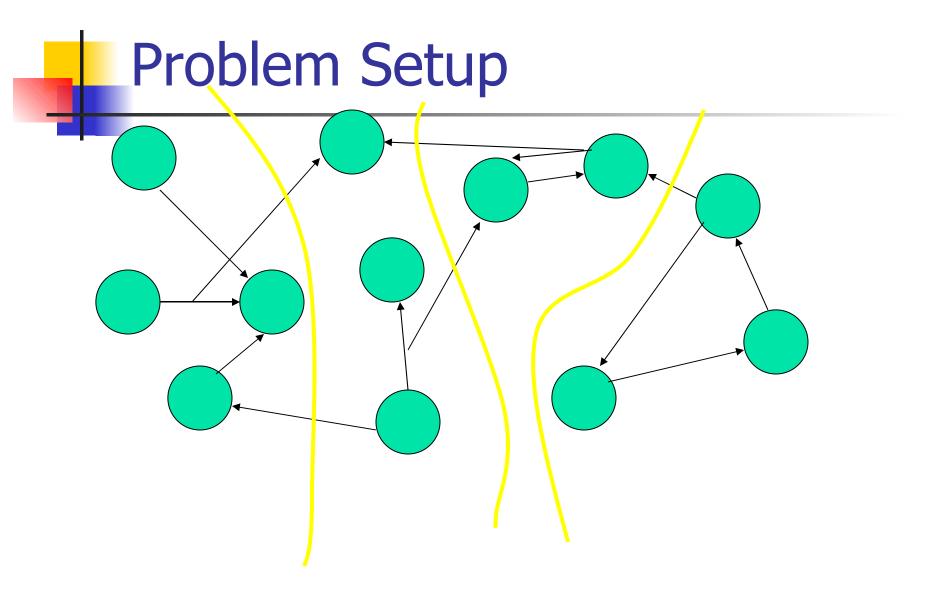
Michael Wrighton/Andre DeHon

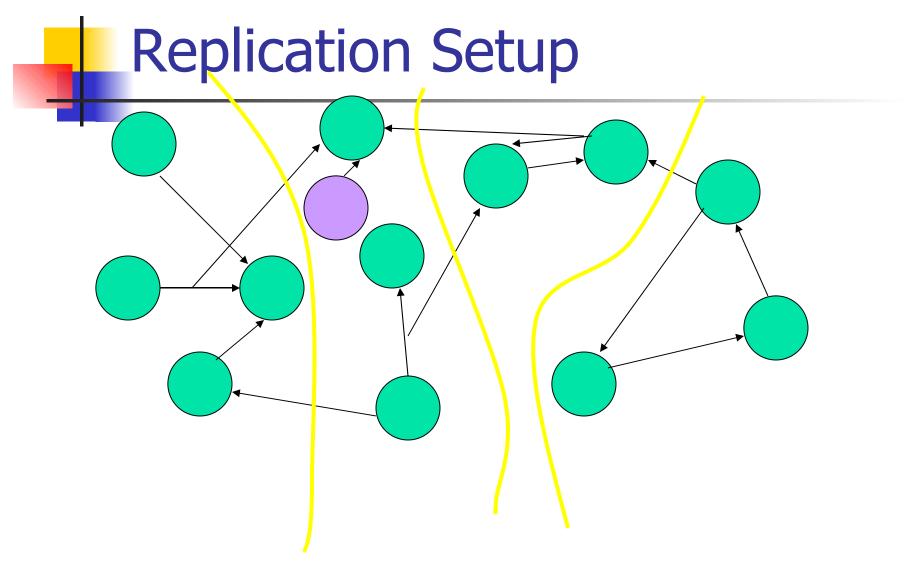
mwrighton@tabula.com



Outline

- Problem Setup/Motivation
- Related Work
- Simple SAT Partitioning Formulation
- Techniques for Improving Efficiency
- Results
- More Sophisticated Metrics
- Future Directions





Current State of the Art

- All Useful, Balanced Optimization Functions NP-Hard
- Simple 2-Way Partitioning
 - Optimal Solutions Available via Branch and Bound
 - Suggest Fidducia-Matthyses Techniques Near Optimal
 - But BB Results Only Scale to ~50 nodes

Current State of the Art

- Multiway Partitioning
 - No published optimal results on VLSI netlists
 - Synthetic netlist experiments
 - Much larger solution space
 - Typically solved via recursive bipartitioning
- Partitioning with Replication
 - Optimal Techniques for Unbalanced Case
 - Based on Network Flows
 - Unknown Quality of Heuristics

What's Missing?

- Optimal Solutions
 - Multiway Partitioning
 - Replication
 - More "Realistic" Cost Functions
- Solutions Could Guide Heuristic Development
- Solve Practical Problems

Optimal Partitioning Algorithm Development

- Capo "Small" Partitioner
 - Best available optimal partitioning tool
 - 2-way cut-hyperedges formulation
 - Relies on pruning techniques applicable only to bipartitioning
- Not Clear How to Generalize Techniques to Multiway, Multiobjective, and Replication Formulations

Optimization vs. Decision Problems

Any Optimization Problem Can Be Transformed into a Series of Decision Problems

```
while (upperBound > lowerBound) {
    thisTry = (upperBound + lowerBound) / 2
    if (existsSolution(this)) {
        upperBound = thisTry
    }
    else {
        lowerBound = thisTry
    }
}
```

NP-Complete Problems

- Fundamental Property of NP-Complete Decision Problem:
- Can Transform An Instance from One Member of the Class to Another Within Polynomial Time and Space
- Offers Mechanism to Leverage Advances Between Problem Domains

Early SAT Partitioning

- S. Devadas, ICCAD1989
 - Bipartitioning Formulation
 - 32 Node Netlists
 - SAT Solvers & Hardware of 1989
 - "An attractive feature of this approach is that the entire space of feasible solutions can be represented in a compact way, facilitating the search for optimal solutions under complex cost functions and associated constraints."

SAT Solver Development

- Very Competitive Marketplace for SAT Solvers
 - ICSAT Conference Annual Competition
 - Standard Input Format
 - Conjunctive Normal Form (Product of Sums)
 - Trivial Output
- Fast 2005 Solver ~10x Faster than Fastest 2004 Solver
 - Not Atypical
- Practical to Solve Millions of Clauses

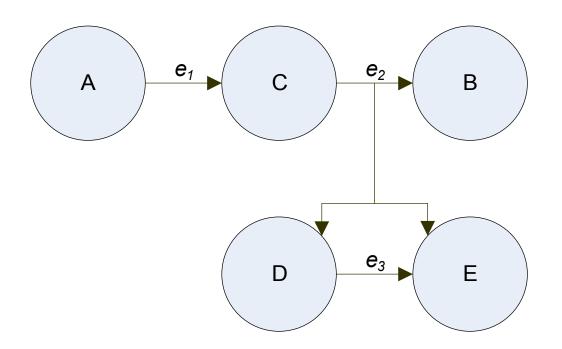
Our Formulation

- Build Problem as Traditional Logic Circuit
- For Every Node, Assign K Inputs (one for each partition)
 - i.e. A₁...A_k,B₁...B_k , ...
 - Assert Exactly One of K Inputs Set (for now)

SAT = AllNodesRepresented ^ PartitionsBalanced ^ MetricMet

Example Partitioning Problem

3-Way Partition

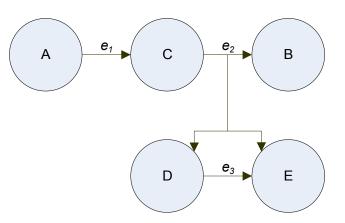


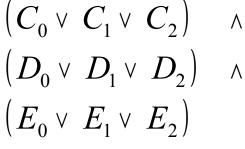
SAT = AllNodesRepresented ∧ PartitionsBalanced ∧ MetricMet

Components

All Nodes Represented $(A_0 \lor A_1 \lor A_2)$ in A Partition $(B_0 \lor B_1 \lor B_2) \land$

AllNodesRepresented = $(C_0 \lor C_1 \lor C_2)$





 $AllNodesRepresented = \bigwedge_{A \in Nodes} \left| \bigvee_{0 < = i < nparts} \right|$

 (A_k)

SAT = AllNodesRepresented ^ PartitionsBalanced ^ MetricMet

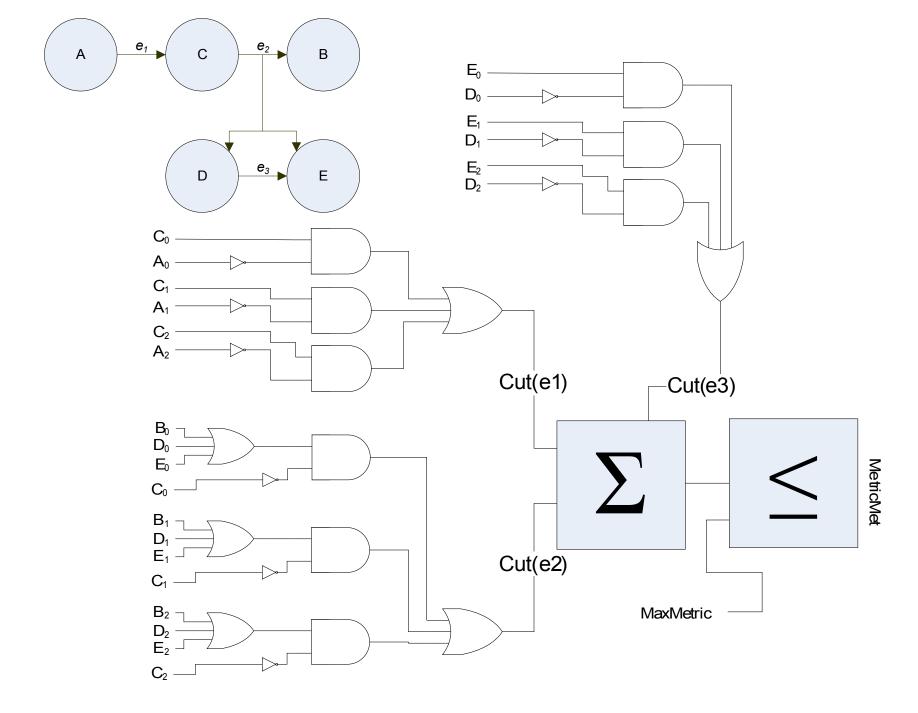
Components

Balance Condition

$$PartitionsBalanced = \bigwedge_{0 < i < = nparts} \left(\left(\sum_{A \in Nodes} A_i \right) \le MaxSize \right)$$

- Binary Counter and Comparators
- More Efficient Representation
 - Bailleux and Boufkhad

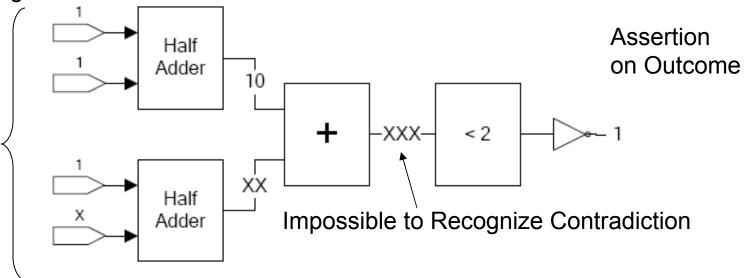
SAT = AllNodesRepresented ^ PartitionsBalanced ^ MetricMet



Cardinality Constraints

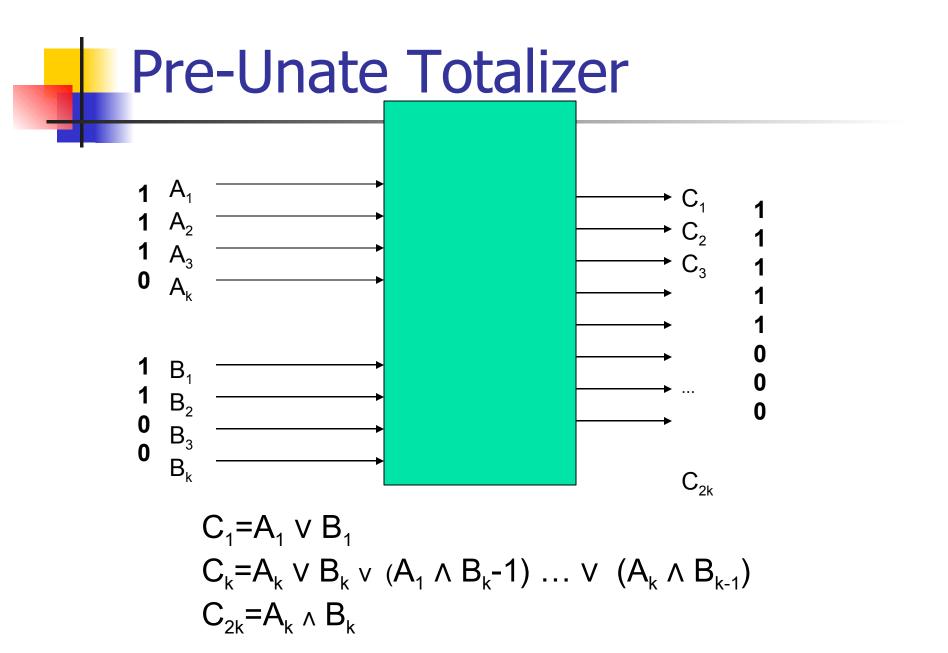
Key Component of Metrics, Balance ConstraintsSimplistic Counter Representation

Partial Assignment of Variables



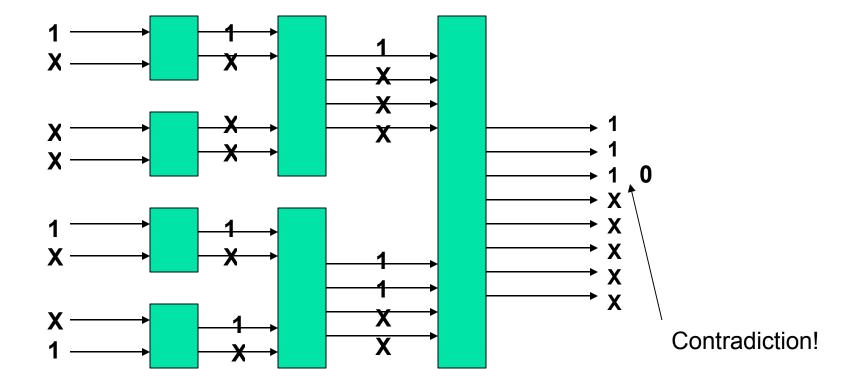
Cardinality Constraints

- Pre-Unate Representation
 - Bailleux and Boufkhad, SAT2004
- Represent Cardinalities Of Max Size N with Bit Vectors of N bits
 - Represent 'k' by setting first k bits
 - Example:
 - Max Value = 5
 - Express 3 as: 11100



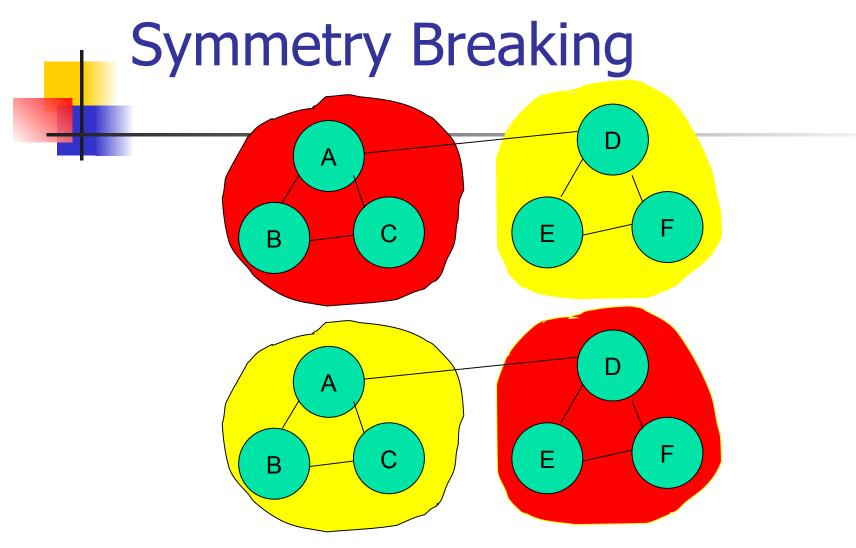
Pre-Unate Cardinality Constraints

Recursively Decompose Cardinalities As Before

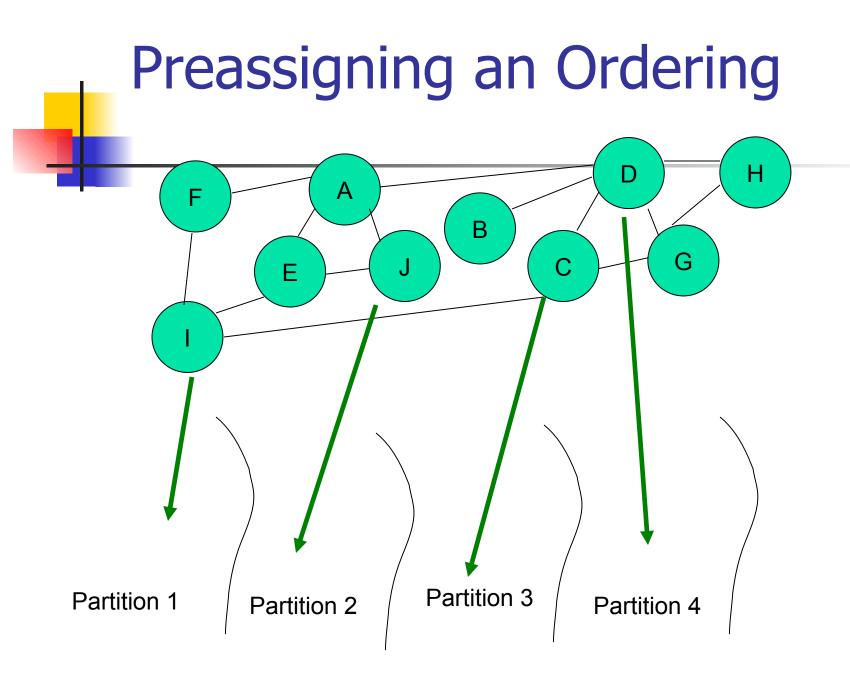


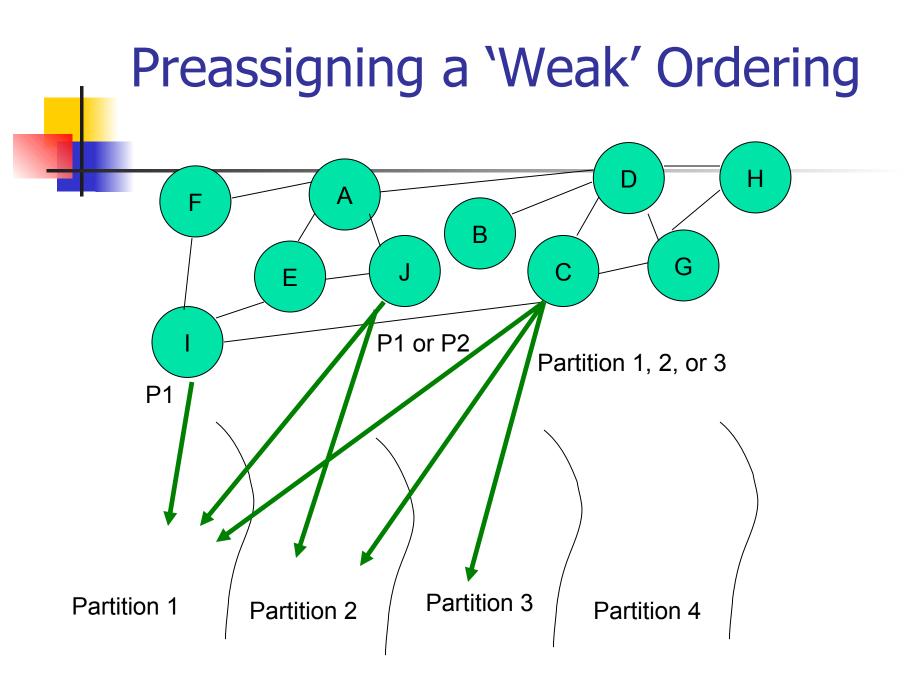
Pre-Unate Speedup

Netlist	Size	k	SAT Runtime (ms)			
			Binary	Bailleux & Boufkhad	Speedup	
ex4		2	16360	2762	5.9	
	55	3	20130	4168	4.8	
		4	42877	10960	3.9	
		5	93999	15332	6.1	
		6	174480	22921	7.6	
misex2		2	16098	1246	12.9	
	97	3	59514	14344	4.1	
		4	105858	14678	7.2	Typical Speedup
		5	160268	16358	9.8	
		6	524047	62035	8.4	l \ of About
	100	2	73936	8631	8.6	
		3	207867	40410	5.1	🖉 🦯 an Order
5xp1		4	716010	102163	7.0	
		5	Timeout	243489	-	of Magnitude
		6	Timeout	652259	-	ormagintade
	114	2	7416	2010.25	3.7	
		3	25970	3049	8.5	
f51m		4	27988	2694	10.4	
		5	135951	9881	13.8	
		6	533034	34044	15.7	
kirkman	151	2	400696	22714	17.6	
		3	742069	75493	9.8	
		4	1442291	160343	9.0	
		5	Timeout	Timeout	-	
		6	Timeout	Timeout	-	



In General: K! Potential Symmetries

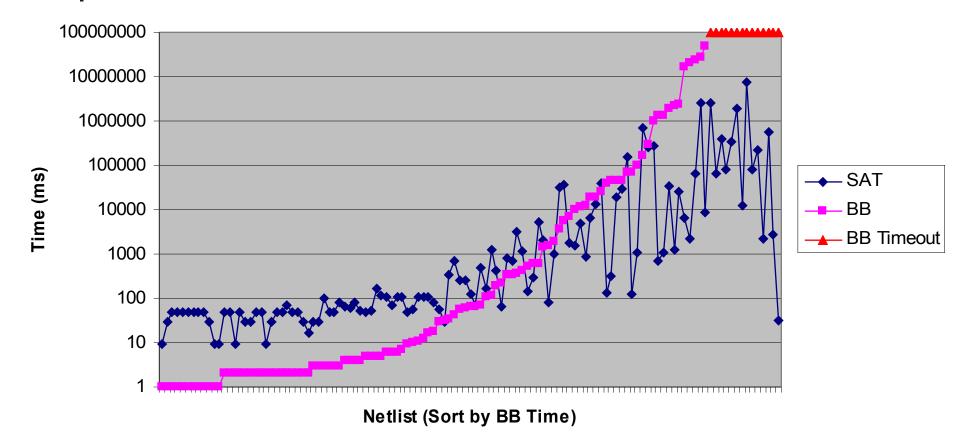




Runtime: Misex2, 97 Nodes

k	No Symmetry Breaking	Weak Ordering
2	1237	1092
3	15082	4443
4	14740	4814
5	16671	5463
6	64989	23974

Comparison Against BB



Adding Replication

$$AllNodesRepresented = \bigwedge_{A \in Nodes} \left(\bigvee_{0 < = i < nparts} (A_k) \right)$$

$$PartitionsBalanced = \bigwedge_{0 < i < = nparts} \left(\left(\sum_{A \in Nodes} A_i \right) \le MaxSize \right)$$

- If MaxSize > Minimum Capacity to Fit Nodes
 - Replication Allowed

Replication Performance

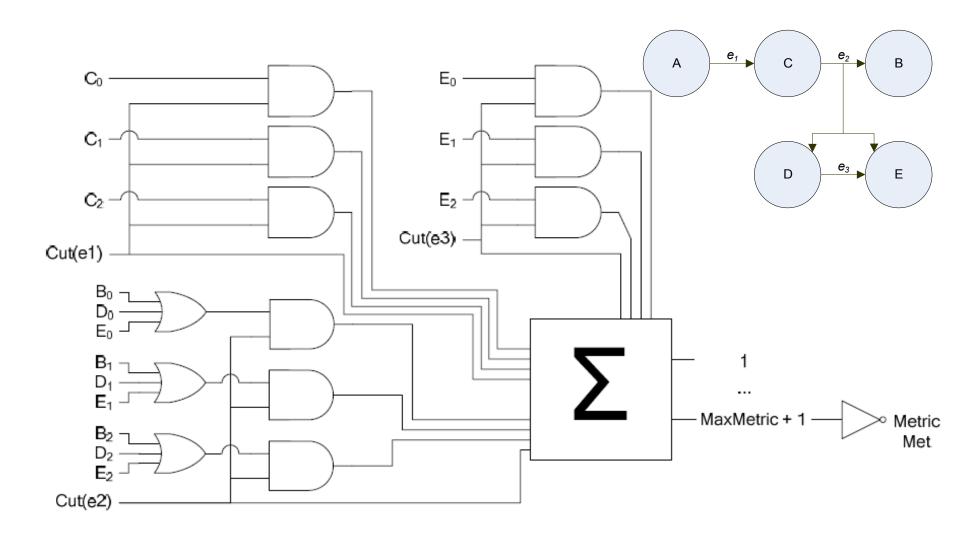
2 Partitions, Each 60% of Total Area

Netlist	Size	No R	eplication	Replication		Slowdown	% Cutsize
		Cut	ms	Cut	ms	Slowdown	Impr.
c8	131	8	1413	8	2228	1.58	0
sao2	133	15	188887	10	7401	0.04	33
s641	135	13	55061	10	16559	0.30	23
s713	137	13	56494	10	12840	0.23	23
mm9b	141	17	344367	15	3348853	9.72	12
C1355	147	16	32097	16	117767	3.67	0
C499	147	16	28155	16	292111	10.38	0
cse	148	18	1522416	11	221276	0.15	39
cht	151	5	170	5	145	0.85	0
kirkman	151	12	11317	9	15006	1.33	25
Avg.						2.82	15.5

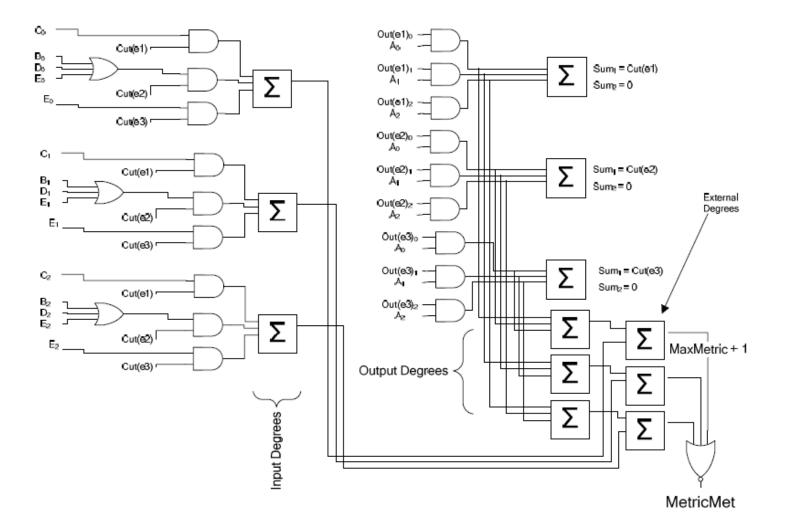
More Realistic Optimization Targets

- Sum of External Degrees
 - Considers Total Number of Pins on Partitions
 - Prefers Solutions Where Cut Edges Interact with Few Partitions
- Maximum Subdomain Degree
 - Consider Maximum IO Into Any Partition
- Practical to Solve ~40 Node Netlists

Sum of External Degrees



Maximum Subdomain Degree



Future Directions

- Higher-K Partitioning
 - More Aggressive Symmetry-Breaking
 - Cost Objectives with Intrinsic Ordering of Partitions
- Hybrid Cost Functions
 - Minimize(Cut Hyperedge Metric) && Maximal Subdomain Metric < x

Conclusions

- Practical SAT Based Formulation of Hypergraph Partitioning
 - Multiway
 - Replication
 - Sophisticated Objective Functions
- Substantial Speedup Over an Existing Optimal Tool for Bipartitioning
- First Published Results for Replication, Multiway, and Realistic Objective Functions

