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&M Current State of the Art

= All Useful, Balanced Optimization
Functions NP-Hard

= Simple 2-Way Partitioning
= Optimal Solutions Available via Branch and
Bound

" Suggest Fidducia-Matthyses Techniques
Near Optimal

= But BB Results Only Scale to ~50 nodes



w Current State of the Art

= Multiway Partitioning

= No published optimal results on VLSI
netlists

= Synthetic netlist experiments
= Much larger solution space
= Typically solved via recursive bipartitioning
= Partitioning with Replication
= Optimal Techniques for Unbalanced Case
= Based on Network Flows
= Unknown Quality of Heuristics




&% What's Missing?

= Optimal Solutions
= Multiway Partitioning
= Replication
= More "Realistic” Cost Functions

= Solutions Could Guide Heuristic
Development

= Solve Practical Problems




Optimal Partitioning Algorithm
&W Development

= Capo "Small” Partitioner
= Best available optimal partitioning tool
= 2-way cut-hyperedges formulation
= Relies on pruning techniques applicable
only to bipartitioning

= Not Clear How to Generalize Techniques
to Multiway, Multiobjective, and
Replication Formulations




Optimization vs. Decision

*M Problems

= Any Optimization Problem Can Be
Transformed into a Series of Decision
Problems

while (upperBound > lowerBound) {
thisTry = (upperBound + lowerBound) / 2

if (existsSolution(this)) { \
upperBound = thisTry
} Partitioning at Some Metric:

else { NP-Complete
Decision Problem

lowerBound = thisTry

}
}



w NP-Complete Problems

= Fundamental Property of NP-Complete
Decision Problem:

® Can Transform An Instance from One
Member of the Class to Another Within
Polynomial Time and Space

= Offers Mechanism to Leverage
Advances Between Problem Domains



w Early SAT Partitioning

= S, Devadas, ICCAD1989
= Bipartitioning Formulation

= 32 Node Netlists
= SAT Solvers & Hardware of 1989

= “"An attractive feature of this approach is
that the entire space of feasible solutions
can be represented in a compact way,
facilitating the search for optimal solutions
under complex cost functions and
associated constraints.”




&% SAT Solver Development

= Very Competitive Marketplace for SAT Solvers
= JCSAT Conference Annual Competition

= Standard Input Format
= Conjunctive Normal Form (Product of Sums)

= Trivial Output

= Fast 2005 Solver ~10x Faster than Fastest
2004 Solver

= Not Atypical
= Practical to Solve Millions of Clauses




&W Our Formulation

= Build Problem as Traditional Logic Circuit

= For Every Node, Assign K Inputs (one for
each partition)
= i.e. A,..A,B,..B, ..

= Assert Exactly One of K Inputs Set (for now)
SAT = AllNodesRepresented

U PartitionsBalanced
1 MetricMet



ﬁ% Example Partitioning Problem

= 3-Way Partition
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SAT = AllNodesRepresented

U0 PartitionsBalanced

*W Components

= All Nodes Represented

in A Partition (4,040 4) T
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SAT = AllNodesRepresented

0 PartitionsBalanced

&W CO m po n e nts 0 MetricMet

= Balance Condition

1

D Al Nodes D

PartitionsBalanced = ] HH

0<i<=nparts

z A.HS MaxSizeE

= Binary Counter and Comparators

= More Efficient Representation
= Bailleux and Boufkhad



SAT = AllNodesRepresented
U0 PartitionsBalanced
0 MetricMet
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&W Cardinality Constraints

= Key Component of Metrics, Balance Constraints
= Simplistic Counter Representation

Partial Assignment of Variables
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&M Cardinality Constraints

= Pre-Unate Representation
= Bailleux and Boufkhad, SAT2004

= Represent Cardinalities Of Max Size N
with Bit Vectors of N bits
= Represent 'k’ by setting first k bits

= Example:

= Max Value = 5
= Express 3 as: 11100
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i« Pre-Unate Totalizer
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‘| Pre-Unate Cardinality Constraints

= Recursively Decompose Cardinalities As Before
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Pre-Unate Speedup

SAT Runtime (ms) \
Netlist | Size k Bi ) Baillenx & Speed
inary Boufkhad peedup
2 14360 2762 59
3 20130 4168 4.2
exd 35 4 42877 10960 30
5 03000 15332 6.1
g 174480 22921 7.6
2 16098 1246 129
3 30314 14344 41 .
misex2 | 97 | 4 105858 14678 72 Typical Speedup
5 160268 16338 9.8
6 524047 62035 B4 of About
2 73034 3631 2.6
3 207867 40410 5.1
Sxpl 100 4 716010 102163 70 an Order
5 Timeout 243489 - I
] Timecut f32250 - Of MagnItUde
2 7416 201025 37
3 25070 3049 2.5
f5lm 114 4 27088 2694 10.4
5 135051 QE81 138
5 533034 34044 137
2 400696 22714 176
3 742069 75493 0.8
kirkrman 151 4 1442201 160343 on
5 Timecut Timecut -
& Timecut Timecut - /



*« Symmetry Breaking

0RO

= In General: K! Potential Symmetries



Preassigning an Ordering

Srest’

!

Partition 1 ?Partton 2 > Partition 3 > Partition 4 >




Preassighing a ‘Weak’ Ordering

o0% ®
Fé V Partition 1, 2, or 3

:

Partition 1 Partition 2 Partition 3 Partition 4



Runtime: Misex2, 97 Nodes

K No Symmetry |Weak Ordering
Breaking

2 1237 1092

3 15082 4443

4 14740 4814

5 16671 5463

6 64989 23974




MComparison Against BB
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&M Adding Replication

AllINodesRepresented = [ ﬁ ] (Ak)ﬁ

All Nodes| |0< = i< nparts

l

Oci<=nparts D Al Nodes D

PartitionsBalanced = ] HH z A.HS MaxSizeE

= If MaxSize > Minimum Capacity to Fit Nodes
= Replication Allowed



Replication Performance

= 2 Partitions, Each 60% of Total Area
Netlist |Size| No Replication | Replication |_ % Cutsize
- : Slowdown
Cut ms Cut| ms Impr.
c8 131 8 1413 8 2228 1.58 0
sao2 | 133 15 188887 10 7401 0.04 33
s641 | 135 13 55061 10] 16559 0.30 23
s713 [ 137 13 56494 10 12840 0.23 23
mm9b | 141 17 344367 15| 3348853 9.72 12
C1355 | 147 16 32097 16| 117767 3.67 0
C499 |[147 16 28135 16 292111 10.38 0
cse 148 18 1522416 11} 221276 0.15 39
cht 151 5 170 5 145 0.85 0
kirkman | 151 12 11317 9 15006 1.33 25
Avg. 2.82 15.5




More Realistic Optimization

&W Targets

= Sum of External Degrees

= Considers Total Number of Pins on
Partitions

= Prefers Solutions Where Cut Edges Interact
with Few Partitions

= Maximum Subdomain Degree
= Consider Maximum IO Into Any Partition

= Practical to Solve ~40 Node Netlists
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Maximum Subdomain Degree
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w Future Directions

= Higher-K Partitioning
= More Aggressive Symmetry-Breaking

= Cost Objectives with Intrinsic Ordering of
Partitions

= Hybrid Cost Functions
= Minimize(Cut Hyperedge Metric) &&
Maximal Subdomain Metric < X




w Conclusions

= Practical SAT Based Formulation of
Hypergraph Partitioning
= Multiway
= Replication
= Sophisticated Objective Functions

= Substantial Speedup Over an Existing Optimal
Tool for Bipartitioning

= First Published Results for Replication,
Multiway, and Realistic Objective Functions




{ Questions



