

Finding Optimal L1 Cache
Configuration for Embedded
Systems

Andhi Janapsatya, Aleksandar Ignjatovic, Sri
Parameswaran

School of Computer Science and Engineering

Outline

Motivation and Goal
Existing Work
Cache exploration algorithm
Energy model
Experiment and results
Conclusion

Motivation

Cache memories energy make up a
large portion of the total processor
energy consumption.
Modern processor (i.e. ASIP) allows the
configuration of its cache memory.

Motivation

Current Processor design flow typically
configure the largest cache memory
allows by the energy and space
constraint to ensure maximum
performance.
But largest cache memory does not
guarantee best performance or lower
energy consumption.

Performance (g721enc)

100

1000

10000

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Cache Misses

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
s)

512
1024
2048
4096
8192
16384
32768
65536
131072
> 131072

Performance (g721enc)

100

1000

10000

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Cache Misses

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
s)

512
1024
2048
4096
8192
16384
32768
65536
131072
> 131072

Largest
cache

Best
Performance

Energy (g721enc)

100

1000

10000

100 1000 10000 100000 1000000 10000000 100000000 1000000000

Cache Misses

To
ta

l E
ne

rg
y

(m
J)

512
1024
2048
4096
8192
16384
32768
65536
131072
> 131072

Energy (g721enc)

100

1000

10000

100 1000 10000 100000 1000000 10000000 100000000 1000000000

Cache Misses

To
ta

l E
ne

rg
y

(m
J)

512
1024
2048
4096
8192
16384
32768
65536
131072
> 131072

Largest
cache

lowest
energy

Goal

Explore the effect of various cache
configuration given an application trace
and the computer architecture energy
and performance specification.
To configure the optimal cache
parameter for minimum system energy
consumption and/or best performance.

Existing Work

Dinero IV was developed by Jan Edler
and Mark Hill.
Dinero IV is a single processor cache
simulation tool.
Its purpose is to simulate cache
memory and estimate the number of
cache misses given a program trace.

Existing Work

Gecsei et al. introduced the inclusion
property of caches in the paper titled
“Evaluation Techniques for Storage
Hierarchies” published in 1970.
The inclusion property states that
‘cache C2’ is a subset of ‘cache C1’ if all
content of ‘cache C2’ is contained in
‘cache C1’.

Inclusion property

We exploit the inclusion property in two
ways.
Inclusion 1 is when a small cache is a
subset of a larger cache.
Inclusion 2 is when a cache with less
associativity is a subset of caches with
larger associativity.

Inclusion 1 example

1010 Cache Size = 1

For cache size = 1, all memory address will be
mapped to the same cache address.

Inclusion 1 example

1010

101(1)101(0) Cache Size = 2

Cache Size = 1

If an entry cause a cache hit when within the
cache size = 1, then a cache hit is guarantee in
the cache size = 2, due to inclusion property.

Inclusion 1 example

1010

101(1)

10(01) 10(11)

101(0)

10(00) 10(10)

Cache Size = 2

Cache Size = 4

Cache Size = 1

Likewise, a cache hit within the cache size = 1
or the cache size = 2 cache configurations will
result in a hit within the cache size = 4.

1(011) 1(111)1(001) 1(101)1(010) 1(110)1(100)1(000)

Cache Size = 2

Cache Size = 4

Cache Size = 8

Cache Size = 11010

101(1)

10(01) 10(11)

101(0)

10(00) 10(10)

Inclusion 1 example

 And a cache hit with cache size equals 1, 2, or
4 will also result in a cache hit in cache
configuration cache size = 8.

Inclusion 2

In a direct-mapped cache, all entry that maps
to the current cache set can only be stored in
a single location.

Most recently
used element in

the cache.

Cache Assoc. = 1

Top of
linked list

Most recently
used element in

the cache.

Cache Assoc. = 1 Cache Assoc. = 2

Inclusion 2

For a 2-way associative cache,the entry is
mapped to two locations. With LRU policy, a
cache hit in the most recently element
guarantee a cache hit.

Top of
linked list

Inclusion 2

Likewise, for larger associativity cache
configurations.

Least Recently
Used element in

the cache.

Most recently
used element in

the cache.

Cache Assoc. = 1 Cache Assoc. = 2 Cache Assoc. = 4

Existing Work

Hill in 1989 developed the stack
algorithm based on the inclusion
property to simulate multiple levels of
cache and investigate the effect of
different cache associativity.
Sugumar in 1995 developed a variation
to the stack algorithm called the
binomial trees.

Existing Work

Li in 2004 extends the work by Sugumar
by adding compression for the binomial
trees algorithm.
Other existing cache simulation
methodologies exploit parallel
processing unit [Nicol, 1995] or a
multiprocessor system [Heidelberger,
1990].

Contributions

We propose a custom data structure to
maintain the cache content of multiple
cache configurations.
The data structure is a combination of
the forest and linked-list.

Contributions

The binomial trees in [10] has the
complexity of:
 [O(log2(N) +1) * A] to find a cache entry in

the binomial tree.
 and [O(log2(N) +1) * A] to update the

content of the binomial tree.
N is the size of the cache and,
A is the associativity of the cache.

Contributions

Our custom data structures has the
following complexity:
 [O(log2(N) +1) * A] to search for the

requested cache entry.
 and [O(log2(N) +1)] to maintain the content

of the data structure.

Cache Exploration Algorithm

For each entry in the trace, the
algorithm needs to calculate the cache
location in all the different cache
configurations and determine whether
the trace entry is the same as the
existing entry in the cache (i.e. cache
hit) or different to the existing entry in
the cache (i.e. cache miss).

Custom Data Structure

Array Forest Linked List

Cache Exploration Algorithm

The memory address is used as an
index into an array for inspecting the
current content of that particular cache
entry to determine the hit/miss.
The size of the array is determine by the
smallest sets of all the cache
configurations that is to be explored.

Cache Exploration Algorithm

The figure above illustrate the used of
the memory address as an index of the
array.

tag address cache
addr.

mmin

Cache Exploration Algorithm

Content of an array is a pointer to the
top node of a tree.
The tree contain a subset of cache
configuration where the inclusion
property can be exploited.

Cache Exploration Algorithm

Each node in the tree point to a linked list.
Each entry in the linked list contain the tag
entry that is to be compared with the existing
trace address.

Least Recently
Used element in

the cache.

Most recently
used element in

the cache.

Cache Assoc. = 1 Cache Assoc. = 2 Cache Assoc. = 4

System Model

System is modeled as shown below,

CPU

I-Cache D-Cache

DRAM (main memory)

Energy Model

Total energy is calculated by summing
the energy cost of:
 CPU energy
 I-cache access energy
 D-cache access energy
 I-cache miss * memory access energy
 D-cache miss * memory access energy

Performance Model

Total execution time is calculated by
summing the time taken to:
 I-cache access
 D-cache access
 I-cache miss * memory access
 D-cache miss * memory access

Experiments

Program trace were generated using
SimpleScalar 3.0d [Burger, 1997]
Benchmarks were taken from
Mediabench suite [Lee, 1997]
Accuracy of the cache estimation
algorithm is verified against Dinero IV
estimation result [Edler]

Experiments

Accuracy of the power model is verified
against wattch tools [Brooks, 2000]
Performance of the cache estimation
algorithm is compared against the time
taken for Dinero IV to evaluate the
same number of cache configurations.

Results

0

200

400

600

800

1000

1200

1400

1600

1 10 100 1000 10000

Trace size (millions)

To
ta

l E
xe

cu
tio

nT
im

e
(m

in
)

DineroIV
Our Estimation Tool

Results

cjpeg cache configuration design space.

10

100

1000

10 100 1000 10000 100000

Cache Misses (Hundreds)

To
ta

l E
ne

rg
y

(m
J)

512
1024
2048
4096
8192
16384
32768
65536
131072
> 131072

100

1000

10000

10 100 1000 10000 100000 100000
0

1E+07 1E+08

Cache Misses (ten)

To
ta

l E
ne

rg
y

(m
J)

512
1024
2048
4096
8192
16384
32768
65536
131072
> 131072

Results

g721dec cache configuration design space.

10

100

1000

10000

100 1000 10000 100000 1000000 10000000 100000000

Cache Misses

To
ta

l E
ne

rg
y

(m
J)

512
1024
2048
4096
8192
16384
32768
65536
131072
> 131072

Results

pegwitenc cache configuration design space.

Conclusion

Utilize cache inclusion property to
implement an efficient cache parameter
design space exploration tool.
Results were verified against Dinero IV.
System energy and performance
calculation allow the selection of cache
parameters for optimal energy or
performance.

Thank You

