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Introduction

Constraints for embedded system design

2 Power consumption

2 Memory size

Memory management of embedded devices
2 Design suitable on-chip memory configuration

2 Reconfigure application codes to make better use
of available on-chip memory

Our proposal

2 A very aggressive one in extracting and
employing data reuse under data dependence
constraints



Determine minimum on—chip memory

Array-based data-intensive applications

Memory space unit
2 Data block
2 On-chip block

Problem

2 Determine the minimum on-chip memory size
(number of on-chip blocks) so that increasing its
size cannot bring additional performance benefits



‘ Data-Centric View for Reuse
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Challenging Issues

Intro-loop and inter-loop data dependences
Multiple arrays accessed by the application
Complex array access patterns

More sophisticated loop transformations
required than simple fusion-like
transformation



Data Block Graph

Array indices and loop bounds are affine
functions of enclosing loop indices

v loop nests and their iteration spaces [, I,, 1,

ol
. I = T
Computation domain ~ lH '

The set of iterations from loop nest i to

access data block j of array U: L0+
JR and dd € data block 7 of U such that R(l) = d
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Data Block Graph (cont’d)

Nodes: all Zi;, ;s

Edges: data dependence relationships
between two nodes

Execution of computation domain: visiting
each node of DBG

Legal Execution: traversal of DBG respecting
all data dependences



Scheduling

Maximize data reuse for a DBG

J Schedule two nodes: Zu,i; and Zi ;2 ; one after
another by observing the data dependences

Conventional loop transformation achieve

data reuse by transforming each loop nest

individually

Our approach considers the entire
computation domain to extract more reuse
than existing locality-enhancing techniques
such as loop tiling and loop fusion



Scheduling for Single Array Case

Heuristic scheduling based on list scheduling
a0 Select one node from DBG at one time and schedule it

A2 Data dependence constraints: All DBG nodes on which
this node depends must be already scheduled

2 Data reuse constraints: This node should access the
same data block as the previous node

All nodes accessing the current block have been scheduled —
recycle on-chip block for another data block

Other unscheduled nodes still need this block — increase the
number of on-chip blocks by 1
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Minimum # on-chip blocks: 2
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Scheduling for Multiple Arrays Case

Single array centric
2 Accesses to one or two arrays are dominating

Q2 Determine the number of on-chip blocks required
to minimize the number of on-chip block updates

2 Perform each array in turn and choose the best

2 Drawback: fail to capture the coupling between
references to different arrays

Global method
2 Combined DBG (CDBG) by adding locality edges
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Code Generation

Polyhedral tool (Omega Library)

0 Given the iteration space, generate the loop code
that traverse the iteration space

Uli +j — 1][j + k + 3]
IS = {[i,j k] : (LBi<i<UB)A(LB; <j<UB;)
A (LB, <k <UB)}
U[G)[F], U[G][F + 1], U[G][F + 2], ... \U[G][F + K — 1]

DB ={la,b]: (a=G)N(F<b<F+K-1)A(la:bl € DS)}.

ND = {|i,j, k] : Jadbsuchthat (a =i+ j — 1)
ANb=7+k+3)N (2,7, k] € IS) A (la,b] € DB)}.
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‘ Code Generation (Cont’d)
do G=1 N
doFF=1 N K
if(K>1&& UB3 > LB3){
dotl = max(G-F-K+LB3+5,LB1,G-UB2+1),
min(G+UB3-F+4,UB1,G-LB2+1)
do t3 = max(LB3,-G+t1+F-4),
min(UB3,-G+t1+F+K-5)
LWUIG, G-t +t3+4] ..
end do
end do
h
end do
end do
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Scheduling under capacity constraints

How we schedule a DBG with a fixed number
of on-chip blocks?

Objective: to minimize the number of on-chip
block loads/updates as much as possible

Given on-chip blocks number: r and the
number of node chains in DBG: t

2 r2t: assign a private on-chip block per chain
2 r<t: LRU-based victim selection
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Setup

Parameter Value
CPU
Functional Units 4 integer ALUs
4 FP ALUs

LSQ Size
RUU Size
Fetch Width
Decode Width
[ssue Width
Commit Width
Fetch Queue Size
Clock

8 Instructions

[ 6 Instructions
4 instructions/cycle
4 instructions/cycle
4 instructions/cycle
4 instructions/cycle

4 instructions

400 MHz

Memory Hierarchy

On-Chip SRAM
Data Block Size
Oft-Chip DRAM

8K B, software-managed, | cycle latency

32 bytes
32MB, 100 cycle latency
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Benchmarks

Benchmark Brief Number of | On-Chip
Name Description Cycles (M) | Storage
Feature Feature Extraction 2,015.11 366.41
ImgComp Image Compression 760.16 [10.63
Restore Image Restoration [,862.40 278.26
SMT Video Smoothing 95.08 34.97
T-Image Crowd management with 014.24 [82.55
Venhicle-V Vehicle Tracking and Classification 618.27 102.79
Benchmark | Number of | Numberof | Ave. Chain | Eff. Chain
Name Nodes Edges Length Length
Feature 822 2,776 [1.3 9.6
ImgComp 241 995 4.0 [2.3
Restore 720 2,315 13.7 9.1
SMT 103 392 9.6 0.7
T-Image 508 1,733 [3.6 [1.4
Vehicle-V 211 789 10.1 6.6

payn




Normalized On-Chip Memory Size
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Normalized Execution Cycles
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Summary

Targeting the optimization for constrained on-
chip memory space in embedded systems
2 Determine the minimum on-chip memory capacity

that minimize the frequency and volume of data
transfers between off-chip and on-chip memories

2 Restructure application code to make better use
of the available memory hierarchy and obtain
better performance
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Thank you!



Normalized On-Chip Memory Size
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