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Introduction
 Constraints for embedded system design

 Power consumption
 Memory size

 Memory management of embedded devices
 Design suitable on-chip memory configuration
 Reconfigure application codes to make better use 

of available on-chip memory
 Our proposal

 A very aggressive one in extracting and 
employing data reuse under data dependence 
constraints
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Determine minimum on-chip memory

 Array-based data-intensive applications
 Memory space unit

 Data block
 On-chip block

 Problem
 Determine the minimum on-chip memory size 

(number of on-chip blocks) so that increasing its 
size cannot bring additional performance benefits 
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1 on-chip blockN2/K on-chip block

Data-Centric View for Reuse
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Challenging Issues

 Intro-loop and inter-loop data dependences
 Multiple arrays accessed by the application
 Complex array access patterns
 More sophisticated loop transformations 

required than simple fusion-like 
transformation
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Data Block Graph
 Array indices and loop bounds are affine 

functions of enclosing loop indices
 v loop nests and their iteration spaces I1, I2, I3, 

…, Iv

 Computation domain 
 The set of iterations from loop nest i to 

access data block j of array U: 
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Data Block Graph (cont’d)

 Nodes: all 
 Edges: data dependence relationships 

between two nodes
 Execution of computation domain: visiting 

each node of DBG
 Legal Execution: traversal of DBG respecting 

all data dependences
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Scheduling

 Maximize data reuse for a DBG
 Schedule two nodes:                               one after 

another by observing the data dependences    
 Conventional loop transformation achieve 

data reuse by transforming each loop nest 
individually

 Our approach considers the entire 
computation domain to extract more reuse 
than existing locality-enhancing techniques 
such as loop tiling and loop fusion
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Scheduling for Single Array Case
 Heuristic scheduling based on list scheduling

 Select one node from DBG at one time and schedule it
 Data dependence constraints: All DBG nodes on which 

this node depends must be already scheduled
 Data reuse constraints: This node should access the 

same data block as the previous node
 All nodes accessing the current block have been scheduled – 

recycle on-chip block for another data block
 Other unscheduled nodes still need this block – increase the 

number of on-chip blocks by 1
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Minimum # on-chip blocks: 1

Array U: Block 1 Block 2 Block 3 Block 4
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Minimum # on-chip blocks: 2
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Scheduling for Multiple Arrays Case

 Single array centric
 Accesses to one or two arrays are dominating
 Determine the number of on-chip blocks required 

to minimize the number of on-chip block updates
 Perform each array in turn and choose the best
 Drawback: fail to capture the coupling between 

references to different arrays
 Global method

 Combined DBG (CDBG) by adding locality edges
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Minimum # on-chip blocks: 2
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Code Generation
 Polyhedral tool (Omega Library)

 Given the iteration space, generate the loop code 
that traverse the iteration space
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Code Generation (Cont’d)
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Scheduling under capacity constraints

 How we schedule a DBG with a fixed number 
of on-chip blocks?

 Objective: to minimize the number of on-chip 
block loads/updates as much as possible

 Given on-chip blocks number: r and the 
number of node chains in DBG: t
 r≥t: assign a private on-chip block per chain
 r<t: LRU-based victim selection
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Setup
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Benchmarks
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Single array centric: 19.5% 
Global: 26.1%



  24

Single array centric: 19.9% 
Loop based: 11.2%
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Summary

 Targeting the optimization for constrained on-
chip memory space in embedded systems
 Determine the minimum on-chip memory capacity 

that minimize the frequency and volume of data 
transfers between off-chip and on-chip memories

 Restructure application code to make better use 
of the available memory hierarchy and obtain 
better performance
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Thank you!
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