
Maximizing Data Reuse for
Minimizing Memory Space
Requirements and Execution
Cycles

M. Kandemir, G. Chen and F. Li
Pennsylvania State University

 2

Outline
 Introduction
 Determine minimum on-chip memory

 Data-centric view for reuse
 Data Block Graph (DBG)
 Scheduling
 Code generation

 Scheduling under capacity constraints
 Experiments
 Summary

 3

Introduction
 Constraints for embedded system design

 Power consumption
 Memory size

 Memory management of embedded devices
 Design suitable on-chip memory configuration
 Reconfigure application codes to make better use

of available on-chip memory
 Our proposal

 A very aggressive one in extracting and
employing data reuse under data dependence
constraints

 4

Determine minimum on-chip memory

 Array-based data-intensive applications
 Memory space unit

 Data block
 On-chip block

 Problem
 Determine the minimum on-chip memory size

(number of on-chip blocks) so that increasing its
size cannot bring additional performance benefits

 5

1 on-chip blockN2/K on-chip block

Data-Centric View for Reuse

 6

Challenging Issues

 Intro-loop and inter-loop data dependences
 Multiple arrays accessed by the application
 Complex array access patterns
 More sophisticated loop transformations

required than simple fusion-like
transformation

 7

Data Block Graph
 Array indices and loop bounds are affine

functions of enclosing loop indices
 v loop nests and their iteration spaces I1, I2, I3,

…, Iv

 Computation domain
 The set of iterations from loop nest i to

access data block j of array U:

 8

Data Block Graph (cont’d)

 Nodes: all
 Edges: data dependence relationships

between two nodes
 Execution of computation domain: visiting

each node of DBG
 Legal Execution: traversal of DBG respecting

all data dependences

 9

Scheduling

 Maximize data reuse for a DBG
 Schedule two nodes: one after

another by observing the data dependences
 Conventional loop transformation achieve

data reuse by transforming each loop nest
individually

 Our approach considers the entire
computation domain to extract more reuse
than existing locality-enhancing techniques
such as loop tiling and loop fusion

 10

Scheduling for Single Array Case
 Heuristic scheduling based on list scheduling

 Select one node from DBG at one time and schedule it
 Data dependence constraints: All DBG nodes on which

this node depends must be already scheduled
 Data reuse constraints: This node should access the

same data block as the previous node
 All nodes accessing the current block have been scheduled –

recycle on-chip block for another data block
 Other unscheduled nodes still need this block – increase the

number of on-chip blocks by 1

 11

Minimum # on-chip blocks: 1

Array U: Block 1 Block 2 Block 3 Block 4

 12

Minimum # on-chip blocks: 2

 13

Scheduling for Multiple Arrays Case

 Single array centric
 Accesses to one or two arrays are dominating
 Determine the number of on-chip blocks required

to minimize the number of on-chip block updates
 Perform each array in turn and choose the best
 Drawback: fail to capture the coupling between

references to different arrays
 Global method

 Combined DBG (CDBG) by adding locality edges

 14

Minimum # on-chip blocks: 2

 15

Code Generation
 Polyhedral tool (Omega Library)

 Given the iteration space, generate the loop code
that traverse the iteration space

 16

Code Generation (Cont’d)

 17

Scheduling under capacity constraints

 How we schedule a DBG with a fixed number
of on-chip blocks?

 Objective: to minimize the number of on-chip
block loads/updates as much as possible

 Given on-chip blocks number: r and the
number of node chains in DBG: t
 r≥t: assign a private on-chip block per chain
 r<t: LRU-based victim selection

 18

 19

 20

 21

Setup

 22

Benchmarks

 23

Single array centric: 19.5%
Global: 26.1%

 24

Single array centric: 19.9%
Loop based: 11.2%

 25

Summary

 Targeting the optimization for constrained on-
chip memory space in embedded systems
 Determine the minimum on-chip memory capacity

that minimize the frequency and volume of data
transfers between off-chip and on-chip memories

 Restructure application code to make better use
of the available memory hierarchy and obtain
better performance

 26

Thank you!

 27

