
Maximizing Data Reuse for
Minimizing Memory Space
Requirements and Execution
Cycles

M. Kandemir, G. Chen and F. Li
Pennsylvania State University

 2

Outline
 Introduction
 Determine minimum on-chip memory

 Data-centric view for reuse
 Data Block Graph (DBG)
 Scheduling
 Code generation

 Scheduling under capacity constraints
 Experiments
 Summary

 3

Introduction
 Constraints for embedded system design

 Power consumption
 Memory size

 Memory management of embedded devices
 Design suitable on-chip memory configuration
 Reconfigure application codes to make better use

of available on-chip memory
 Our proposal

 A very aggressive one in extracting and
employing data reuse under data dependence
constraints

 4

Determine minimum on-chip memory

 Array-based data-intensive applications
 Memory space unit

 Data block
 On-chip block

 Problem
 Determine the minimum on-chip memory size

(number of on-chip blocks) so that increasing its
size cannot bring additional performance benefits

 5

1 on-chip blockN2/K on-chip block

Data-Centric View for Reuse

 6

Challenging Issues

 Intro-loop and inter-loop data dependences
 Multiple arrays accessed by the application
 Complex array access patterns
 More sophisticated loop transformations

required than simple fusion-like
transformation

 7

Data Block Graph
 Array indices and loop bounds are affine

functions of enclosing loop indices
 v loop nests and their iteration spaces I1, I2, I3,

…, Iv

 Computation domain
 The set of iterations from loop nest i to

access data block j of array U:

 8

Data Block Graph (cont’d)

 Nodes: all
 Edges: data dependence relationships

between two nodes
 Execution of computation domain: visiting

each node of DBG
 Legal Execution: traversal of DBG respecting

all data dependences

 9

Scheduling

 Maximize data reuse for a DBG
 Schedule two nodes: one after

another by observing the data dependences
 Conventional loop transformation achieve

data reuse by transforming each loop nest
individually

 Our approach considers the entire
computation domain to extract more reuse
than existing locality-enhancing techniques
such as loop tiling and loop fusion

 10

Scheduling for Single Array Case
 Heuristic scheduling based on list scheduling

 Select one node from DBG at one time and schedule it
 Data dependence constraints: All DBG nodes on which

this node depends must be already scheduled
 Data reuse constraints: This node should access the

same data block as the previous node
 All nodes accessing the current block have been scheduled –

recycle on-chip block for another data block
 Other unscheduled nodes still need this block – increase the

number of on-chip blocks by 1

 11

Minimum # on-chip blocks: 1

Array U: Block 1 Block 2 Block 3 Block 4

 12

Minimum # on-chip blocks: 2

 13

Scheduling for Multiple Arrays Case

 Single array centric
 Accesses to one or two arrays are dominating
 Determine the number of on-chip blocks required

to minimize the number of on-chip block updates
 Perform each array in turn and choose the best
 Drawback: fail to capture the coupling between

references to different arrays
 Global method

 Combined DBG (CDBG) by adding locality edges

 14

Minimum # on-chip blocks: 2

 15

Code Generation
 Polyhedral tool (Omega Library)

 Given the iteration space, generate the loop code
that traverse the iteration space

 16

Code Generation (Cont’d)

 17

Scheduling under capacity constraints

 How we schedule a DBG with a fixed number
of on-chip blocks?

 Objective: to minimize the number of on-chip
block loads/updates as much as possible

 Given on-chip blocks number: r and the
number of node chains in DBG: t
 r≥t: assign a private on-chip block per chain
 r<t: LRU-based victim selection

 18

 19

 20

 21

Setup

 22

Benchmarks

 23

Single array centric: 19.5%
Global: 26.1%

 24

Single array centric: 19.9%
Loop based: 11.2%

 25

Summary

 Targeting the optimization for constrained on-
chip memory space in embedded systems
 Determine the minimum on-chip memory capacity

that minimize the frequency and volume of data
transfers between off-chip and on-chip memories

 Restructure application code to make better use
of the available memory hierarchy and obtain
better performance

 26

Thank you!

 27

