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Introduction and Motivation

 A critical component of an embedded computing 
system is its memory architecture
 Embedded applications are data intensive and make 

frequent memory references
 Execution cycles spent in memory accesses
 Contribute to a large fraction of overall power 

consumption
 Constitute a significant portion of overall chip area

 Vulnerable to transient errors  reliability optimizations
 Security leaks are exploited through manipulation of 

memory space



  

Memory Occupancy

 MMO: Maximum memory 
occupancy
 captures the amount of 

memory that needs to be 
allocated for the 
application

 AMO: Average memory 
occupancy
 important in a multi-

programming based 
embedded environment 
where multiple 
applications compete for 
the same memory space

 The drops in the curve
 Application-level dead 

memory block recycling
 System-level garbage 

collection



  

Data Compression

 Goal

  Keep the data block in the on-chip memory even if the 
reuse distance is large

 Compress data blocks with large inter-access times
 When next request comes, decompress the data block 

and forward it to the requester



  

Data Compression

 Advantages 
 Data is kept on-chip
 Less memory occupation

 Drawback 
 Decompression
 We should not compress the data block if its reuse 

distance is short
 Need a global on-chip memory space optimization 

scheme



  

Data Compression

 Challenges :
 Which data blocks should be compressed and 

decompressed
 The order of compressions and decompressions
 Data sharing across the processors must be accounted for

 Decisions should be made by global data access patterns
 Original execution cycle count should not increase 

excessively
 Need to be careful about the critical path of execution
 Complex compression/decompression algorithms should be 

avoided



  

Data Tiles/Blocks

 Arrays are divided 
into equal-sized 
tiles/blocks

 In X[[I]][J]
 I is the tile subscript 

vector
 J is the intra-tile 

subscript vector, 
which indexes an 
element within a 
given tile



  

Our Approach

 Compressed area
 Dynamically managed
 Uses the compiler-

determined schedule
 Decompression buffer 

 Dynamically managed
 Uses the compiler-

determined schedule
 Static data area

 Scalar variables
 Statically allocated at 

compilation time

Compressor Decompressor

Compressed
Area

Decompression
Buffer

Compressed tile

Uncompressed tile

D-Cache

Processor
Core



  

Our Approach

 Each array has a directory entry
 Contains a pointer to the memory location
 In the static data area

 Free table is used to keep track of the free blocks in the decompression buffer
 The compressed area is divided into equal-sized slices 

 A slice is smaller than a block

Directory of X

Compressed AreaStatic Data Area

Block Block Block Block

Slice

Slice

Slice

Slice Slice

Slice

Block Block Block Block
Slice

Slice

Slice Slice

 Directory of Y
Decompression Buffer

 Compression ratio 
depends on the specific 
tile
 Number of slices may 

vary
 Slices of the same tile 

form a link table
 Compiler automatically 

tiles 
 A user-transparent 

process



  

Data Tiling

Data Tiling

 Data tiling transforms memory layout
 Example: 

 600 X 600 array
 A tile is 100 X 100

 Data tiling: 
 Decompressor invoked 100 times / tile
 Total decompressions 100 X 36 = 3600 



  

Data and Loop Tiling

Data Tiling & 
Loop Tiling

 Loop tiling (iteration 
space blocking) 
 transforms the order in 

which the array 
elements are accessed

 can significantly 
reduce the number of 
decompressions

 Data and loop tiling: 
 Decompressor invoked 

1 time / tile
 Total decompressions 

1 X 36 = 36



  

 Reduce the number of off-chip memory accesses
 Even if this increases the number of on-chip 

communication
 Optimize on-chip data reuse as much as possible 

 If reuse distance is large:
 Send data to off-chip memory 

 Subsequent access is costly
 Keep it on-chip

 Reduces effective memory capacity

Compiler-Guided Data Compression



  

Compiler-Guided Data Compression

 Compiler augments the loop nests with the 
decompression buffer management code

 di(t)  The reuse distance of tile 
 Number of intra-tile loop nests executed between the 

current and the next accesses to the tile
 A compiler-based approach to compute 

 di(t) the reuse distance of tile t at intra-tile loop nest Ti



  

Compiler-Guided Data Compression

 If ( di(t) >  n*N) reuse distance is treated as ∞ 
 N  threshold
 n  number of intra-tile loop nests 

 An inaccuracy in computing the reuse distance
 May lead to performance penalties 
 Not a correctness issue



  

Compiler-Guided Data Compression

 Decompressions can still incur performance 
penalties

 Overlap compression and decompression 
procedures with that of the computing loop 
nest

 Two threads run in parallel
 Computing thread 
 Buffer management thread



  

Example

Nestcj Tiles of X in bufferi

*[1,2]:2L111 *[1,1]:41
*[1,0]:∞[1,2]:3L221 [1,1]:41
*[1,3]:4[1,2]:6L132 [1,1]:41
[1,3]:5[1,2]:6L242 [1,1]:∞1
[1,3]:8[1,2]:6L153 *[1,4]:61
[1,3]:8[1,2]:∞L263 [1,4]:71
*[2,2]:8*[2,1]:10L171 [1,4]:72
[2,2]:9[2,1]:10L281 *[2,0]:∞2
[2,2]:12[2,1]:10L192 *[2,3]:102
[2,2]:12[2,1]:∞L2102 [2,3]:112
[2,2]:12*[2,4]:12L1113 [2,3]:142
[2,2]:∞[2,4]:13L2123 [2,3]:142

 Intra-tile loop nests: L1 and L2
 9 tiles, and buffer can accommodate 

3 tiles 
 Intra-tile loop nest L1:

 Tiles  X[[i, j]] and X[[i, j +1]], 
 Reuse distances  d1 = 3 and d2 

= 1
 Intra-tile loop nest L2 

 Tiles  X[[i, j+1]] and X[[i, j−1]]
 Reuse distances  d3 = 1 and d4 

= ∞
 [[x, y]] : r  tile [[x, y]] will be reused at c = r
 “*” indicates that the tile is decompressed
 Each tile is decompressed only once

2



  

Experimental Evaluation

 Implemented using the SUIF 
 Defines a small kernel
 Implemented as  a separate pass

 Used the LZO algorithm as a data compression library 
 Very fast in compression 
 Extremely fast in decompression
 Thread-safe and lossless 
 Supports overlapping compression and in-place 

decompression 
 Our approach can work with any compression 

algorithm



  

Experimental Evaluation

 BASE: 
 Does not employ any data compression or decompression
 Uses iteration space  tiling

 LF: 
 Uses a lifetime analysis at a data block level 
 Reclaims the memory space occupied by dead data blocks

 AGG: 
 Aggressive data compression and decompressions
 As  soon  as an access to a data block is completed,  it  is compressed
 Reduces memory space consumption significantly
 Incurs higher performance penalties 

 CD: 
 This  is  the  compiler-directed  scheme proposed 
 Uses  compression and decompression based on the data  reuse information

 CD+LF: 
 Combines our compression based approach with dead block recycling  
 Should generate  the  best  memory occupancy  savings



  

Experimental Evaluation

 Memory space occupancy for Jacobi 
 20 epochs with the same number of execution cycles
 Memory occupancy of 

BASE continuously 
increases 

 The best space 
savings are achieved  
with the CD+LF 
version 
 Combines data 

compression and 
dead block recycling



  

Experimental Evaluation

 Average performance degradation is 3.3\%
 The largest performance loss occur with: mpeg-2 and wave

 Lowest data reuse
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Conclusion

 A compiler-directed approach
 Compiler analyzes a given application code 
 Extracts data reuse information at the data block level.
 Decides the set of data blocks to be 

compressed/decompressed
 Decides compression/decompression points
 Inserts compression and decompression calls in the 

application code 
 Reduces maximum and average memory space 

consumption
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