

Compiler-Guided Data Compression for
Reducing Memory Consumption of
Embedded Applications

O. Ozturk, G. Chen, and M. Kandemir
Pennsylvania State University

I. Kolcu
University of Manchester

Outline

 Introduction and Motivation
 Data Compression
 Data Tiling
 Compiler-Guided Data Compression
 Example
 Experimental Evaluation
 Conclusion

Introduction and Motivation

 A critical component of an embedded computing
system is its memory architecture
 Embedded applications are data intensive and make

frequent memory references
 Execution cycles spent in memory accesses
 Contribute to a large fraction of overall power

consumption
 Constitute a significant portion of overall chip area

 Vulnerable to transient errors reliability optimizations
 Security leaks are exploited through manipulation of

memory space

Memory Occupancy

 MMO: Maximum memory
occupancy
 captures the amount of

memory that needs to be
allocated for the
application

 AMO: Average memory
occupancy
 important in a multi-

programming based
embedded environment
where multiple
applications compete for
the same memory space

 The drops in the curve
 Application-level dead

memory block recycling
 System-level garbage

collection

Data Compression

 Goal

 Keep the data block in the on-chip memory even if the
reuse distance is large

 Compress data blocks with large inter-access times
 When next request comes, decompress the data block

and forward it to the requester

Data Compression

 Advantages
 Data is kept on-chip
 Less memory occupation

 Drawback
 Decompression
 We should not compress the data block if its reuse

distance is short
 Need a global on-chip memory space optimization

scheme

Data Compression

 Challenges :
 Which data blocks should be compressed and

decompressed
 The order of compressions and decompressions
 Data sharing across the processors must be accounted for

 Decisions should be made by global data access patterns
 Original execution cycle count should not increase

excessively
 Need to be careful about the critical path of execution
 Complex compression/decompression algorithms should be

avoided

Data Tiles/Blocks

 Arrays are divided
into equal-sized
tiles/blocks

 In X[[I]][J]
 I is the tile subscript

vector
 J is the intra-tile

subscript vector,
which indexes an
element within a
given tile

Our Approach

 Compressed area
 Dynamically managed
 Uses the compiler-

determined schedule
 Decompression buffer

 Dynamically managed
 Uses the compiler-

determined schedule
 Static data area

 Scalar variables
 Statically allocated at

compilation time

Compressor Decompressor

Compressed
Area

Decompression
Buffer

Compressed tile

Uncompressed tile

D-Cache

Processor
Core

Our Approach

 Each array has a directory entry
 Contains a pointer to the memory location
 In the static data area

 Free table is used to keep track of the free blocks in the decompression buffer
 The compressed area is divided into equal-sized slices

 A slice is smaller than a block

Directory of X

Compressed AreaStatic Data Area

Block Block Block Block

Slice

Slice

Slice

Slice Slice

Slice

Block Block Block Block
Slice

Slice

Slice Slice

 Directory of Y
Decompression Buffer

 Compression ratio
depends on the specific
tile
 Number of slices may

vary
 Slices of the same tile

form a link table
 Compiler automatically

tiles
 A user-transparent

process

Data Tiling

Data Tiling

 Data tiling transforms memory layout
 Example:

 600 X 600 array
 A tile is 100 X 100

 Data tiling:
 Decompressor invoked 100 times / tile
 Total decompressions 100 X 36 = 3600

Data and Loop Tiling

Data Tiling &
Loop Tiling

 Loop tiling (iteration
space blocking)
 transforms the order in

which the array
elements are accessed

 can significantly
reduce the number of
decompressions

 Data and loop tiling:
 Decompressor invoked

1 time / tile
 Total decompressions

1 X 36 = 36

 Reduce the number of off-chip memory accesses
 Even if this increases the number of on-chip

communication
 Optimize on-chip data reuse as much as possible

 If reuse distance is large:
 Send data to off-chip memory

 Subsequent access is costly
 Keep it on-chip

 Reduces effective memory capacity

Compiler-Guided Data Compression

Compiler-Guided Data Compression

 Compiler augments the loop nests with the
decompression buffer management code

 di(t) The reuse distance of tile
 Number of intra-tile loop nests executed between the

current and the next accesses to the tile
 A compiler-based approach to compute

 di(t) the reuse distance of tile t at intra-tile loop nest Ti

Compiler-Guided Data Compression

 If (di(t) > n*N) reuse distance is treated as ∞
 N threshold
 n number of intra-tile loop nests

 An inaccuracy in computing the reuse distance
 May lead to performance penalties
 Not a correctness issue

Compiler-Guided Data Compression

 Decompressions can still incur performance
penalties

 Overlap compression and decompression
procedures with that of the computing loop
nest

 Two threads run in parallel
 Computing thread
 Buffer management thread

Example

Nestcj Tiles of X in bufferi

*[1,2]:2L111 *[1,1]:41
*[1,0]:∞[1,2]:3L221 [1,1]:41
*[1,3]:4[1,2]:6L132 [1,1]:41
[1,3]:5[1,2]:6L242 [1,1]:∞1
[1,3]:8[1,2]:6L153 *[1,4]:61
[1,3]:8[1,2]:∞L263 [1,4]:71
[2,2]:8[2,1]:10L171 [1,4]:72
[2,2]:9[2,1]:10L281 *[2,0]:∞2
[2,2]:12[2,1]:10L192 *[2,3]:102
[2,2]:12[2,1]:∞L2102 [2,3]:112
[2,2]:12*[2,4]:12L1113 [2,3]:142
[2,2]:∞[2,4]:13L2123 [2,3]:142

 Intra-tile loop nests: L1 and L2
 9 tiles, and buffer can accommodate

3 tiles
 Intra-tile loop nest L1:

 Tiles X[[i, j]] and X[[i, j +1]],
 Reuse distances d1 = 3 and d2

= 1
 Intra-tile loop nest L2

 Tiles X[[i, j+1]] and X[[i, j−1]]
 Reuse distances d3 = 1 and d4

= ∞
 [[x, y]] : r tile [[x, y]] will be reused at c = r
 “*” indicates that the tile is decompressed
 Each tile is decompressed only once

2

Experimental Evaluation

 Implemented using the SUIF
 Defines a small kernel
 Implemented as a separate pass

 Used the LZO algorithm as a data compression library
 Very fast in compression
 Extremely fast in decompression
 Thread-safe and lossless
 Supports overlapping compression and in-place

decompression
 Our approach can work with any compression

algorithm

Experimental Evaluation

 BASE:
 Does not employ any data compression or decompression
 Uses iteration space tiling

 LF:
 Uses a lifetime analysis at a data block level
 Reclaims the memory space occupied by dead data blocks

 AGG:
 Aggressive data compression and decompressions
 As soon as an access to a data block is completed, it is compressed
 Reduces memory space consumption significantly
 Incurs higher performance penalties

 CD:
 This is the compiler-directed scheme proposed
 Uses compression and decompression based on the data reuse information

 CD+LF:
 Combines our compression based approach with dead block recycling
 Should generate the best memory occupancy savings

Experimental Evaluation

 Memory space occupancy for Jacobi
 20 epochs with the same number of execution cycles
 Memory occupancy of

BASE continuously
increases

 The best space
savings are achieved
with the CD+LF
version
 Combines data

compression and
dead block recycling

Experimental Evaluation

 Average performance degradation is 3.3\%
 The largest performance loss occur with: mpeg-2 and wave

 Lowest data reuse

AMOMMO AMOMMO

518.7
303.0
143.6
399.0
340.5
281.1
131.3

126

MMO
CD

338.3
257.8

98.1
328.3
254.1
236.9

86.0
97.4

AMO

320.3
197.7

83.2
298.6
229.9
218.8

74.8
88.2

399.2
245.1
114.5
352.0
281.4
299.8
105.4
118.3

AMO
CD + LFAGGLFBenchmar

k

301.9
180.3

71.6
277.1
205.4
194.8

63.4
77.1

466.7498.7585.4Wibi

109.4126.3151.3Spec

281.5307.6367.4Mpeg-2

106.7118.7177.7Jacobi

234.0

352.1

217.8

98.8

MMO

Wave

Simi

LU

Facerec

258.1311.5

376.8427.2

253.2328.0

114.7143.3

Conclusion

 A compiler-directed approach
 Compiler analyzes a given application code
 Extracts data reuse information at the data block level.
 Decides the set of data blocks to be

compressed/decompressed
 Decides compression/decompression points
 Inserts compression and decompression calls in the

application code
 Reduces maximum and average memory space

consumption

Thanks

