
  

Compiler-Guided Data Compression for 
Reducing Memory Consumption of
Embedded Applications

O. Ozturk, G. Chen, and M. Kandemir
Pennsylvania State University

I. Kolcu
University of Manchester



  

Outline

 Introduction and Motivation
 Data Compression
 Data Tiling
 Compiler-Guided Data Compression
 Example
 Experimental Evaluation
 Conclusion



  

Introduction and Motivation

 A critical component of an embedded computing 
system is its memory architecture
 Embedded applications are data intensive and make 

frequent memory references
 Execution cycles spent in memory accesses
 Contribute to a large fraction of overall power 

consumption
 Constitute a significant portion of overall chip area

 Vulnerable to transient errors  reliability optimizations
 Security leaks are exploited through manipulation of 

memory space



  

Memory Occupancy

 MMO: Maximum memory 
occupancy
 captures the amount of 

memory that needs to be 
allocated for the 
application

 AMO: Average memory 
occupancy
 important in a multi-

programming based 
embedded environment 
where multiple 
applications compete for 
the same memory space

 The drops in the curve
 Application-level dead 

memory block recycling
 System-level garbage 

collection



  

Data Compression

 Goal

  Keep the data block in the on-chip memory even if the 
reuse distance is large

 Compress data blocks with large inter-access times
 When next request comes, decompress the data block 

and forward it to the requester



  

Data Compression

 Advantages 
 Data is kept on-chip
 Less memory occupation

 Drawback 
 Decompression
 We should not compress the data block if its reuse 

distance is short
 Need a global on-chip memory space optimization 

scheme



  

Data Compression

 Challenges :
 Which data blocks should be compressed and 

decompressed
 The order of compressions and decompressions
 Data sharing across the processors must be accounted for

 Decisions should be made by global data access patterns
 Original execution cycle count should not increase 

excessively
 Need to be careful about the critical path of execution
 Complex compression/decompression algorithms should be 

avoided



  

Data Tiles/Blocks

 Arrays are divided 
into equal-sized 
tiles/blocks

 In X[[I]][J]
 I is the tile subscript 

vector
 J is the intra-tile 

subscript vector, 
which indexes an 
element within a 
given tile



  

Our Approach

 Compressed area
 Dynamically managed
 Uses the compiler-

determined schedule
 Decompression buffer 

 Dynamically managed
 Uses the compiler-

determined schedule
 Static data area

 Scalar variables
 Statically allocated at 

compilation time

Compressor Decompressor

Compressed
Area

Decompression
Buffer

Compressed tile

Uncompressed tile

D-Cache

Processor
Core



  

Our Approach

 Each array has a directory entry
 Contains a pointer to the memory location
 In the static data area

 Free table is used to keep track of the free blocks in the decompression buffer
 The compressed area is divided into equal-sized slices 

 A slice is smaller than a block

Directory of X

Compressed AreaStatic Data Area

Block Block Block Block

Slice

Slice

Slice

Slice Slice

Slice

Block Block Block Block
Slice

Slice

Slice Slice

 Directory of Y
Decompression Buffer

 Compression ratio 
depends on the specific 
tile
 Number of slices may 

vary
 Slices of the same tile 

form a link table
 Compiler automatically 

tiles 
 A user-transparent 

process



  

Data Tiling

Data Tiling

 Data tiling transforms memory layout
 Example: 

 600 X 600 array
 A tile is 100 X 100

 Data tiling: 
 Decompressor invoked 100 times / tile
 Total decompressions 100 X 36 = 3600 



  

Data and Loop Tiling

Data Tiling & 
Loop Tiling

 Loop tiling (iteration 
space blocking) 
 transforms the order in 

which the array 
elements are accessed

 can significantly 
reduce the number of 
decompressions

 Data and loop tiling: 
 Decompressor invoked 

1 time / tile
 Total decompressions 

1 X 36 = 36



  

 Reduce the number of off-chip memory accesses
 Even if this increases the number of on-chip 

communication
 Optimize on-chip data reuse as much as possible 

 If reuse distance is large:
 Send data to off-chip memory 

 Subsequent access is costly
 Keep it on-chip

 Reduces effective memory capacity

Compiler-Guided Data Compression



  

Compiler-Guided Data Compression

 Compiler augments the loop nests with the 
decompression buffer management code

 di(t)  The reuse distance of tile 
 Number of intra-tile loop nests executed between the 

current and the next accesses to the tile
 A compiler-based approach to compute 

 di(t) the reuse distance of tile t at intra-tile loop nest Ti



  

Compiler-Guided Data Compression

 If ( di(t) >  n*N) reuse distance is treated as ∞ 
 N  threshold
 n  number of intra-tile loop nests 

 An inaccuracy in computing the reuse distance
 May lead to performance penalties 
 Not a correctness issue



  

Compiler-Guided Data Compression

 Decompressions can still incur performance 
penalties

 Overlap compression and decompression 
procedures with that of the computing loop 
nest

 Two threads run in parallel
 Computing thread 
 Buffer management thread



  

Example

Nestcj Tiles of X in bufferi

*[1,2]:2L111 *[1,1]:41
*[1,0]:∞[1,2]:3L221 [1,1]:41
*[1,3]:4[1,2]:6L132 [1,1]:41
[1,3]:5[1,2]:6L242 [1,1]:∞1
[1,3]:8[1,2]:6L153 *[1,4]:61
[1,3]:8[1,2]:∞L263 [1,4]:71
*[2,2]:8*[2,1]:10L171 [1,4]:72
[2,2]:9[2,1]:10L281 *[2,0]:∞2
[2,2]:12[2,1]:10L192 *[2,3]:102
[2,2]:12[2,1]:∞L2102 [2,3]:112
[2,2]:12*[2,4]:12L1113 [2,3]:142
[2,2]:∞[2,4]:13L2123 [2,3]:142

 Intra-tile loop nests: L1 and L2
 9 tiles, and buffer can accommodate 

3 tiles 
 Intra-tile loop nest L1:

 Tiles  X[[i, j]] and X[[i, j +1]], 
 Reuse distances  d1 = 3 and d2 

= 1
 Intra-tile loop nest L2 

 Tiles  X[[i, j+1]] and X[[i, j−1]]
 Reuse distances  d3 = 1 and d4 

= ∞
 [[x, y]] : r  tile [[x, y]] will be reused at c = r
 “*” indicates that the tile is decompressed
 Each tile is decompressed only once

2



  

Experimental Evaluation

 Implemented using the SUIF 
 Defines a small kernel
 Implemented as  a separate pass

 Used the LZO algorithm as a data compression library 
 Very fast in compression 
 Extremely fast in decompression
 Thread-safe and lossless 
 Supports overlapping compression and in-place 

decompression 
 Our approach can work with any compression 

algorithm



  

Experimental Evaluation

 BASE: 
 Does not employ any data compression or decompression
 Uses iteration space  tiling

 LF: 
 Uses a lifetime analysis at a data block level 
 Reclaims the memory space occupied by dead data blocks

 AGG: 
 Aggressive data compression and decompressions
 As  soon  as an access to a data block is completed,  it  is compressed
 Reduces memory space consumption significantly
 Incurs higher performance penalties 

 CD: 
 This  is  the  compiler-directed  scheme proposed 
 Uses  compression and decompression based on the data  reuse information

 CD+LF: 
 Combines our compression based approach with dead block recycling  
 Should generate  the  best  memory occupancy  savings



  

Experimental Evaluation

 Memory space occupancy for Jacobi 
 20 epochs with the same number of execution cycles
 Memory occupancy of 

BASE continuously 
increases 

 The best space 
savings are achieved  
with the CD+LF 
version 
 Combines data 

compression and 
dead block recycling



  

Experimental Evaluation

 Average performance degradation is 3.3\%
 The largest performance loss occur with: mpeg-2 and wave

 Lowest data reuse

AMOMMO AMOMMO

518.7
303.0
143.6
399.0
340.5
281.1
131.3

126

MMO
CD

338.3
257.8

98.1
328.3
254.1
236.9

86.0
97.4

AMO

320.3
197.7

83.2
298.6
229.9
218.8

74.8
88.2

399.2
245.1
114.5
352.0
281.4
299.8
105.4
118.3

AMO
CD + LFAGGLFBenchmar

k

301.9
180.3

71.6
277.1
205.4
194.8

63.4
77.1

466.7498.7585.4Wibi

109.4126.3151.3Spec

281.5307.6367.4Mpeg-2

106.7118.7177.7Jacobi

234.0

352.1

217.8

98.8

MMO

Wave

Simi

LU

Facerec

258.1311.5

376.8427.2

253.2328.0

114.7143.3



  

Conclusion

 A compiler-directed approach
 Compiler analyzes a given application code 
 Extracts data reuse information at the data block level.
 Decides the set of data blocks to be 

compressed/decompressed
 Decides compression/decompression points
 Inserts compression and decompression calls in the 

application code 
 Reduces maximum and average memory space 

consumption



  

Thanks


