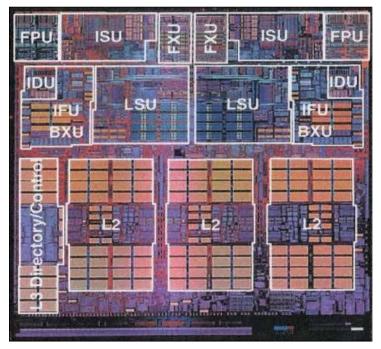


Early Stage Package Resonance Estimation Techniques

Jin Shi , Yici Cai , Sheldon X.-D. Tan , Xianlong Hong

EDA Lab, CS Department, Tsinghua University

2006.1.27


Outline

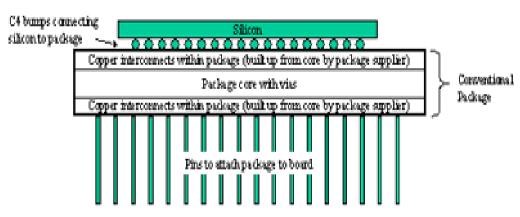
- Modern Power Distribution Design
- C4 Structures and Locality Property
- Resonance Problem
- Estimation Technique
- Experimental Results
- Conclusion

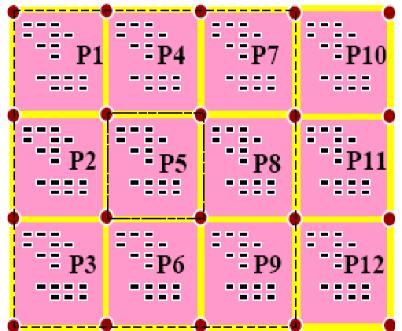
Modern Power Distribution Design

Goals

- DC drop < 30 mv under power density 1W / mm²
- Dynamic fluctuation < 10% of normal Vdd</p>
- Common-mode noise < 200 mv under the worst case</p>

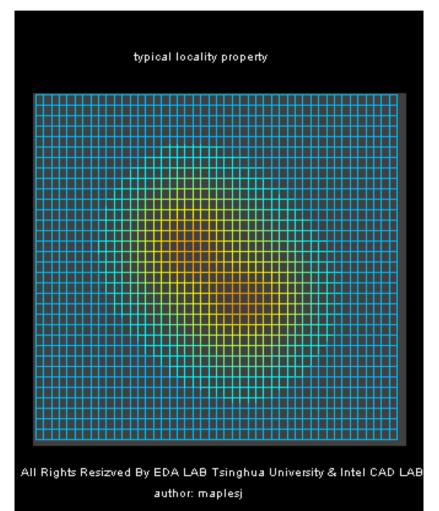
ASP-DAC 2006

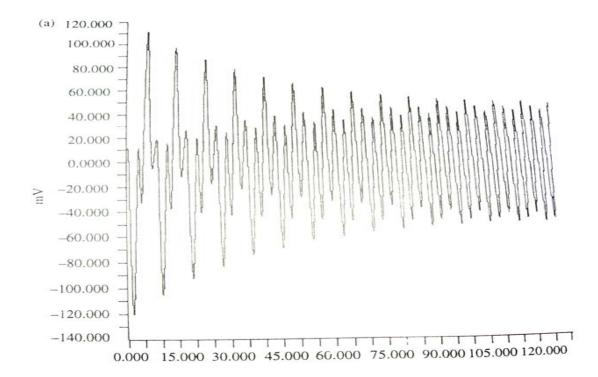

Modern Power Distribution Design


- New Dynamic Problems
 - Logical correlations can cause package resonance with decaps
 - Traditional design flow is lack of ability to detect such kinds of situations
 - Later stage adjustment is prohibitively expensive
 - Estimation in very early stage is needed

C4 Structures and Locality Property

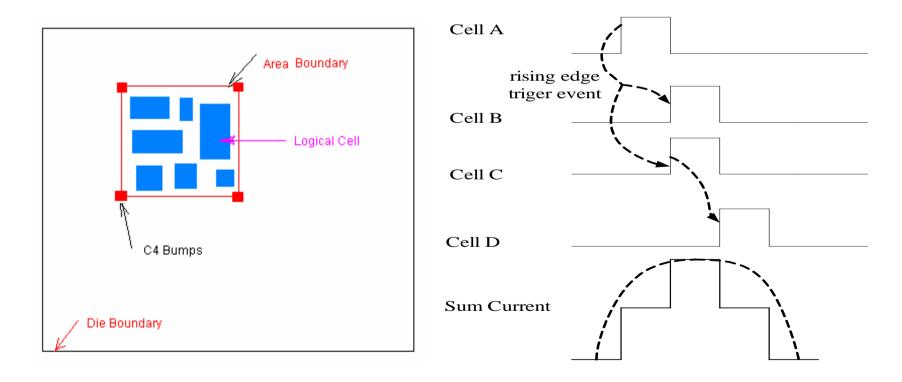
C4 Bumps and Shells


 Bump Array Divide Die Area into Natural Shells

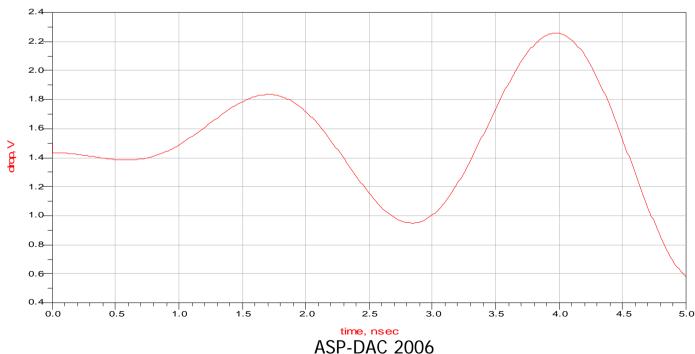

C4 Structures and Locality Property

- Locality Property
 - Local current sources only affect voltage fluctuation in local area
 - Via Density controls the current flow direction

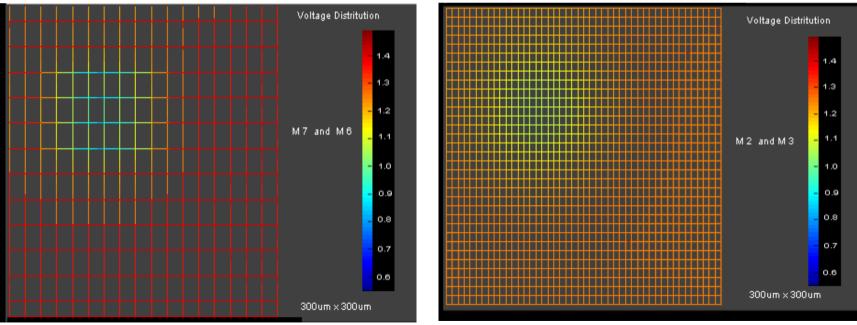
- Traditional Resonance Problem
 - Package Inductance & Decaps
 - Power Switching Events
 - Ringing for Several Cycles
 - Resonance Frequency < Clock Frequency</p>


A Power Grid Ringing Case

- C4 Structure is more easy to Resonance
 - Current Converges from Micros to Pads
 - Logic Correlations in Local Area can provide low frequency harmonics
 - Dynamic Logic should be verified
 - Hard Logic in Pipeline, SMT / HT and Clock Gating Events should be examined in the Early Stage

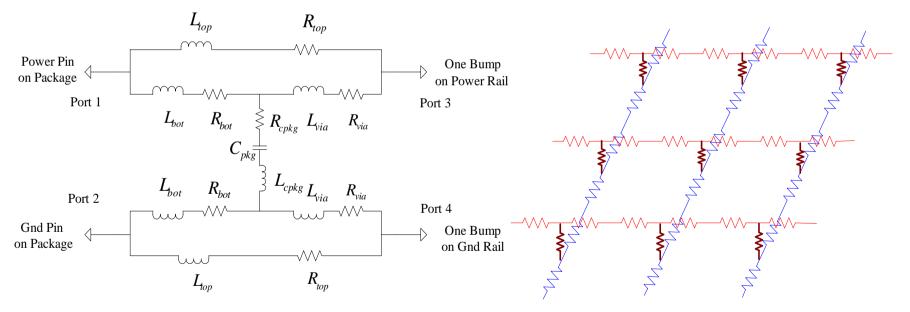

A Resonance Case Study

Sum current contains low frequency harmonics

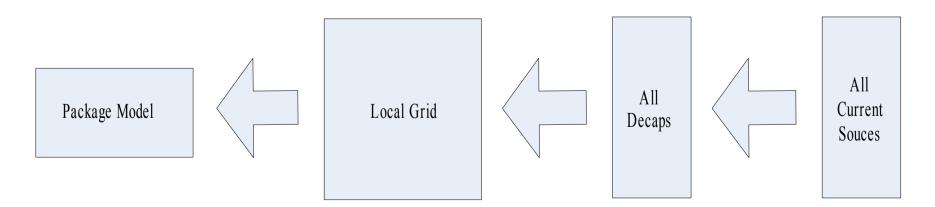

A Resonance Case Study

- Oscillation fades off in a heavy damped system
- Oscillation can be amplified by continuing trigger events

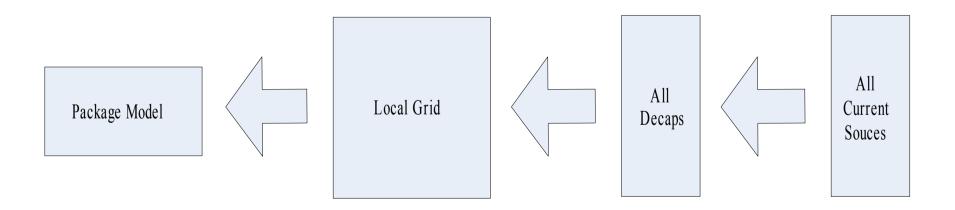
11


- A Resonance Case Study
 - Resonance can affect local/global area
 - Local resonance cause larger fluctuations in M7and smaller in M1

ASP-DAC 2006


Used Model

- Package Model
- Grid Model



Basic Idea

- Compute the frequency response of package
- Translate time-domain current sources into frequency-domain
- Treat Decaps as Filters

- Basic Idea
 - Collect harmonics though local grid
 - Use these harmonics and frequency response of package to estimate voltage drop

- Estimation Algorithm
 - Use Regular Expression to describe the timing correlation of cells
 - Trace all trigger chains to get an on-off Matrix
 - Translate on-off Matrix into Time Domain form
 - Perform FFT on the time domain matrix to get spectrum matrix Z

- Estimation Algorithm
 - Filter row of matrix Z by a decap character vector
 - Sum all rows in Z matrix
 - Look up the package frequency response table to find the maximum drop

- Example
 - Four Micros A, B, C, D
 - Trigger Chain
 - A -> B 1 cycle later
 - A -> C 1 cycle later
 - C -> D 1cycle later
 - Use Regular Expression to Do Merge and Search
 - B A+1
 - C A+1
 - DC+1

- Example
 - On-off Matrix

[1	0	0]
0	1	0
0	1	0
0	0	1

Sample Matrix in Time domain

0.5	0.5	0.5	0	0	0	0	0	0
0	0	0	0.2	0.2	0.2	0	0	0
0	0	0	0.4	0.4	0.4	0	0	0
0	0	0	0	0	0	0.7	0.7	0.7

Example

Spectrum Matrix Z

•									f_9
$Z = A + B \cdot i =$	$\int Z_{11}$	Z_{12}	<i>Z</i> ₁₃	Z_{14}	Z_{15}	Z_{16}	Z_{17}	Z_{18}	z_{19}
	Z_{21}	Z_{22}	Z_{23}	Z ₂₄	Z_{25}	Z_{26}	Z ₂₇	Z_{28}	Z ₂₉
	z_{31}	Z ₃₂	Z ₃₃	Z ₃₄	Z_{35}	Z_{36}	Z ₃₇	Z_{38}	Z ₃₉
	$\lfloor z_{41}$	Z_{42}	Z_{43}	Z_{44}	Z_{45}	Z_{46}	Z_{47}	Z_{48}	Z_{49}

Times Decap Filter Vector

$$Z = Z(r \cdot)F$$

$$F = \frac{1}{2\pi jC} \begin{bmatrix} f_1 & f_2 & f_3 & f_4 & f_5 & f_6 & f_7 & f_8 & f_9 \end{bmatrix}$$

ASP-DAC 2006

- Example
 - Sum all row vector in Z matrix

$$z = \sum Z$$
$$z(1,i) = \sum_{1}^{n} Z(i,j)$$

 Get the maximal drop according to package frequency response

Experimental Results

Typical Non-Resonance Case

Cell	Area size	Area size	Time To		Worst Droop on Package				Relative		
Num	um x um	Decap	Window	Power	Hspice	Run	FFT	Run	Error of		
		pF/um^2	1111101011	10000		Time	estimator	Time	Estimation		
	resonance is less likely to happen, contains harmonics away from resonance frequency										
20	100x100	400	30 ns	10W	8 mv	11 s	5 mv	<2 s	54%		
45	300x300	400	30 ns	20W	13 mv	26 min	7 mv	<2 s	46%		

Experimental Results

Typical Resonance Case

Cell	Area size Area size um x um pF/um ²		Time Total			Worst Droop	Relative				
Num			Power	Hspice	Run	FFT	Run	Error of			
ITTALI		pF/um ²				Time	estimator	Time	Estimation		
	resonance is likely to happen, contains harmonics near resonance frequency										
20	100x100	100	30 ns	10W	0.43 v	11 s	0.38 v	<2 s	11.6%		
45	300x300	100	30 ns	20W	0.46 v	26 min	0.49 v	<2 s	6.5%		

Conclusions

- A new method is proposed to perform resonance estimation in early design stage
- Although it is less accurate when the resonance is less probable to happen, it gives relative accurate result to reveal whether a certain logic correlation can cause resonance problem

Thank you! Q & A