# Power distribution techniques for dual-VDD circuits

### Sarvesh H Kulkarni and Dennis Sylvester EECS Department, University of Michigan

- Motivation for multiple supply design
- Implications of using multiple on-chip supplies
- Power delivery
  - Board and package level issues
  - On-die power grid design
- Results and conclusions

# Motivation – low power design

- Reducing power dissipation at high performance essential for: enhanced battery life in mobile applications, reduced cooling costs for workstations, improved reliability, ...
- Dynamic power dissipation in CMOS circuits  $\alpha$  (VDD)<sup>2</sup> Static power dissipation in CMOS circuits  $\alpha$  (VDD)<sup>3</sup>
- Quadratic/cubic savings in power if VDD scaled down
  - However, delay goes up, thus necessitating careful VDD assignment
    - $\Rightarrow$  Multi-VDD design an important technique leveraging this

Several implications when actually implementing this idea



# Multiple supply design

 Concept: Apply a lower supply (VDDL) to gates on non-critical paths thus reducing power while meeting timing



- A fine-grained VDD assignment scheme provides best power reduction
  - Extended Clustered Voltage Scaling (ECVS)
     K. Usami *et al.*, "Automated low power technique exploiting multiple supply voltages applied to a media processor," *IEEE JSSC*, 1998.
- However, physical design and power delivery are complicated

- Motivation for multiple supply design
- Implications of using multiple on-chip supplies
- Power delivery
  - Board and package level issues
  - On-die power grid design
- Results and conclusions

# Power delivery for dual-VDD circuits

- Fine-grained dual-VDD places VDDL/VDDH gates arbitrarily on the die
- Dual-VDD circuits need to supply two on-die voltages
  - Wire congestion
  - Power grid integrity
- Board and package level issues
  - Fixed resources need to be split between VDDL and VDDH
- However, load on each supply lower than on original single supply, allowing robust power delivery within available resources (fixed decap, C4, wiring)

VDD assignment and power savings

 A large number of gates go to the lower supply in a dual-VDD optimized netlist

|       | VDDL      | = 0.8V | VDDL = 0.6V |       |  |
|-------|-----------|--------|-------------|-------|--|
|       | % Savings | %VDDL  | % Savings   | %VDDL |  |
| c880  | 28        | 65     | 31          | 55    |  |
| c2670 | 32        | 65     | 37          | 56    |  |
| c5315 | 35        | 58     | 37          | 49    |  |
| c7552 | 44        | 91     | 49          | 71    |  |



Avg. 70% (58%) for VDDL = 0.8V (0.6V) with respect to original single VDD design (1.2V)

# Current drawn from VDDL/VDDH

### Current drawn at gate level

|         | Single-VDD |          | Dual-VDD | : VDDL=0.8V | Dual-VDD: VDDL=0.6V |          |  |
|---------|------------|----------|----------|-------------|---------------------|----------|--|
|         | Low-VTH    | High-VTH | Low-VTH  | High-VTH    | Low-VTH             | High-VTH |  |
| INVX10  | 1.00       | 0.90     | 0.57     | 0.49        | 0.36                | 0.27     |  |
| NAND2X2 | 1.00       | 0.85     | 0.54     | 0.45        | 0.34                | 0.23     |  |
| NAND3X6 | 1.00       | 0.88     | 0.55     | 0.47        | 0.35                | 0.24     |  |
| NOR2X1  | 1.00       | 0.86     | 0.52     | 0.39        | 0.30                | 0.19     |  |
| NOR3X4  | 1.00       | 0.85     | 0.50     | 0.37        | 0.29                | 0.18     |  |



□ Avg. 54% (33%) for VDDL = 0.8V (0.6V)

### Current drawn at circuit level

|       | Single VDD | Dual VDD | : VDDL=0.8V | Dual VDD: VDDL=0.6V |      |  |
|-------|------------|----------|-------------|---------------------|------|--|
|       | VDD        | VDDH     | VDDL        | VDDH                | VDDL |  |
| c880  | 9.7        | 5.6      | 2.2         | 5.9                 | 1.3  |  |
| c2670 | 23.6       | 11.9     | 6.5         | 10.1                | 3.0  |  |
| c5315 | 36.7       | 20.9     | 7.2         | 20.9                | 3.6  |  |
| c7552 | 47.9       | 13.9     | 19.4        | 20.4                | 8.5  |  |



Avg. 49% (51%) and 28% (14%) for VDDH and VDDL for 0.8V (0.6V)

- Motivation for multiple supply design
- Implications of using multiple on-chip supplies
- Power delivery
  - Board and package level issues
  - On-die power grid design
- Results and conclusions

# Board and package level study



Intel, "Intel Pentium 4 processor in the 432 pin/Intel 850 Chipset Platform," 2002.

# Package level results

- Two VRMs on board to supply VDDL and VDDH
- Ground path can be shared by VDDL and VDDH
- Decoupling capacitance divided in the ratio of current loads



 Similar power supply noise with same resources (decap, C4) as single-VDD case

- Motivation for multiple supply design
- Implications of using multiple on-chip supplies
- Power delivery
  - Board and package level issues
  - On-die power grid design
- Results and conclusions



#### Segregated placement constrains placer leading to higher core-area and wirelength

C. Yeh, *et al.*, "Layout techniques supporting the use of dual supply voltages for cell-based designs," *Proc. DAC*, 1999. M. Igarashi, *et al.*, "A low-power design method using multiple supply voltages," *Proc. ISLPED*, 1997.

#### 15

### Unconstrained dual-VDD placement





Grid texture



# Dual-VDD power grid design

### Important while designing the dual-VDD grid:

- Scale wires with respect to the single-VDD considering how the current demand has scaled
- □ VDDL gates more sensitive to grid noise ⇒ important as ground is shared
  - 120mV noise is 10% for a 1.2V gate, but 15% for a 0.8V gate
  - 7% higher delay for a 1.2V gate, but 16% for a 0.8V gate
- □ Placement of VDDL and VDDH gates ⇒ assign more wiring resources to VDDL grid in areas where there is more demand for VDDL current
- Consider effects that arise from the board and package level such as shared C4s
  - Fewer C4s leads to higher effective package R, L

# Proposed technique (D-Place)

- Let  $\alpha = I(VDDH)/I(VDD)$  and  $\beta = I(VDDL)/I(VDD)$
- Scale wires as follows  $W_{VDDH} = \alpha W$

$$W_{VDDL} = \beta \frac{VDDH}{VDDL} W$$

$$W_{VDDL} = (\alpha + \beta) \frac{VDDH}{VDDH}$$

$$W_{GND} = \left(\alpha + \beta\right) \frac{VDDH}{VDDL} W$$

Partition the chip floorplan



## Design flow



## Prior work

- Dual-VDD and Dual-GND:
  - Requires two separate grounds off-chip
  - Complicates timing analysis and design of the board
  - □ M. Popovich et al., GLVLSI, 2005.

• (DVDG)

- Dual-VDD and Shared-GND:
  - □ C. Yeh *et al.*, *DAC*, 1999
  - D-Vanilla)

| Dual-VDD             | Dual-GND |
|----------------------|----------|
|                      |          |
|                      |          |
|                      |          |
|                      |          |
|                      |          |
|                      |          |
| └── VDDH<br>└── GNDH | UDDL     |



- 3-D PEEC model
- Wires fractured and represented by RLC models
- Modeled area about 0.5mm<sup>2</sup> (600,000 R/L/C elements)

C. Hoer and C. Love, "Exact inductance equations for rectangular conductors with applications to more complicated geometries," *J. Res. Nat. Bureau Stds.*, 1965.

S. C. Wong, *et al.*, "Modeling of interconnect capacitance, delay and crosstalk in VLSI," *IEEE Trans. Sem. Manuf.*, 2000.

- Motivation for multiple supply design
- Implications of using multiple on-chip supplies
- Power delivery
  - Board and package level issues
  - On-die power grid design
- Results and conclusions

# Peak voltage drop comparisons

**VDDL = 0.6V** 

| VDDL = 0.3 | 8V |
|------------|----|
|------------|----|

|       |     | Single VDD | DVDG  | D-Vanilla | D-Place |       |     | Single VDD | DVDG  | D-Vanilla | D-Place |
|-------|-----|------------|-------|-----------|---------|-------|-----|------------|-------|-----------|---------|
|       | MAX | 16.9%      | 30.9% | 16.4%     | 18.6%   |       | MAX | 16.9%      | 30.3% | 16.3%     | 19.5%   |
| c880  | AVG | 9.5%       | 14.7% | 9.6%      | 9.5%    | c880  | AVG | 9.5%       | 15.9% | 9.7%      | 9.8%    |
|       | MAX | 25.6%      | 35.5% | 32.2%     | 25.5%   |       | MAX | 25.6%      | 36.1% | 27.6%     | 27.0%   |
| c2670 | AVG | 15.9%      | 19.8% | 15.2%     | 14.5%   | c2670 | AVG | 15.9%      | 22.1% | 15.8%     | 15.3%   |
|       | MAX | 29.6%      | 38.2% | 37.4%     | 32.0%   |       | MAX | 29.6%      | 38.1% | 33.0%     | 31.8%   |
| c5315 | AVG | 21.6%      | 23.4% | 20.2%     | 19.8%   | c5315 | AVG | 21.6%      | 25.4% | 20.1%     | 20.3%   |
|       | MAX | 26.8%      | 34.2% | 34.5%     | 29.4%   |       | MAX | 26.8%      | 31.4% | 31.6%     | 28.7%   |
| c7552 | AVG | 22.2%      | 21.0% | 21.1%     | 18.7%   | c7552 | AVG | 22.2%      | 24.9% | 22.3%     | 20.1%   |

- D-Place similar to single-VDD grids in AVG cases
- Inferior by < 2.6% (≈15mV) in some MAX cases</p>
- 0.6V VDDL as robust as 0.8V
- 0.6V also provides higher power savings
- Proposed approach better by 2-7% (AVG) and 7-12% (MAX) compared to prior approaches

# Voltage variation across die



# Additional comparison metrics

### Wire congestion

|       | Single | DVDG |      | D-Va | nilla | D-Place |      |  |
|-------|--------|------|------|------|-------|---------|------|--|
|       | VDD    | 0.6V | 0.8V | 0.6V | 0.8V  | 0.6V    | 0.8V |  |
| c880  | 0.17   | 0.17 | 0.17 | 0.19 | 0.20  | 0.17    | 0.16 |  |
| c2670 | 0.17   | 0.17 | 0.17 | 0.19 | 0.20  | 0.16    | 0.16 |  |
| c5315 | 0.17   | 0.17 | 0.17 | 0.19 | 0.20  | 0.18    | 0.16 |  |
| c7552 | 0.17   | 0.17 | 0.17 | 0.19 | 0.20  | 0.15    | 0.15 |  |

 Comparable to single-VDD as wires are scaled in proportion to lowered current demand

### Maximum voltage variation across die

|       | Single | DVDG  |       | D-Va  | nilla | D-Place |       |  |
|-------|--------|-------|-------|-------|-------|---------|-------|--|
|       | VDD    | 0.6V  | 0.8V  | 0.6V  | 0.8V  | 0.6V    | 0.8V  |  |
| c880  | 10.4%  | 24.5% | 21.1% | 11.2% | 11.0% | 13.8%   | 13.5% |  |
| c2670 | 14.9%  | 26.6% | 25.2% | 26.3% | 22.4% | 18.7%   | 19.7% |  |
| c5315 | 13.7%  | 28.2% | 23.8% | 28.4% | 22.6% | 21.9%   | 20.2% |  |
| c7552 | 10.8%  | 19.9% | 16.3% | 24.5% | 23.9% | 19.1%   | 18.3% |  |

- Motivation for multiple supply design
- Implications of using multiple on-chip supplies
- Power delivery
  - Board and package level issues
  - On-die power grid design
- Results and conclusions



- Demonstrated the feasibility of power delivery for dual-VDD circuits
- Leveraged the observation that dual-VDD circuits have significantly lower supply current demands
- Addressed board and package level issues
- Proposed an improved method for designing on-die grids





### **Simulation setup**

- CMOS process: 1.2V, 0.13µm, dual-Vth, 6 metal layers
- Voltage assignment scheme:
  - Fine-grained (ECVS) based algorithm
  - Asynchronous level converters used
- VDDL = {0.6V, 0.8V}
- VDDH = 1.2V (nominal)
- Standard cell row based layout using Cadence SE



### **Scaled decap**

|             | Scaled Decap Dual VDD |                 |  |  |  |  |
|-------------|-----------------------|-----------------|--|--|--|--|
| Decoupling  | Decap (VDDH)          | 1.02nF (1.06nF) |  |  |  |  |
| Capacitance | Decap (VDDL)          | 0.91nF (1.30nF) |  |  |  |  |
|             | Total Decap           | 1.93nF (2.36nF) |  |  |  |  |
| Grid        |                       |                 |  |  |  |  |
| integrity   | MAX                   | 27.6% (27.0%)   |  |  |  |  |
| metrics     | AVG                   | 16.9% (15.3%)   |  |  |  |  |

### **Dual-VDD level conversion and VDD assignment references**

S. H. Kulkarni and D. Sylvester, "High performance level conversion for multi-VDD design," *IEEE TVLSI*, 2004. S. H. Kulkarni, *et al.*, "A new algorithm for improved VDD assignment in low power dual VDD systems," *ISLPED*, 2004.