ASP-DAC 2006

Session 8C-5: Inductive Issues in Power Grids and Packages

Controlling Inductive Cross-talk and Power in Off-chip Buses using CODECs

Authors:
Brock J. LaMeres
Kanupriya Gulati, Sunil P. Khatri

Agilent Technologies
Texas A\&M University
Texas A\&M University

Motivation

- Power delivery is the biggest challenge facing designers entering DSM
- The IC core current continues to increases ($\mathrm{P} 4=80 \mathrm{Amps}$).
- The package interconnect inductance limits instantaneous current delivery.
- The inductance leads to ground and power supply bounce.
- SSN on signal pins is the leading cause of inter-chip bus failure
- Ground/power supply bounce causes unwanted switching.
- Mutual Inductive cross-talk causes edge degradation which limits speed.
- Mutual Inductive cross-talk causes glitches which results in unwanted switching.
- Further, power in off-chip buses can be significant.
- Large percentage of power may be consumed in the output stages
- Aggressive package design helps, but is too expensive:
- Flip-Chip technology can reduce the interconnect inductance.
- Flip-Chip requires a unique package design for each ASIC.
- This leads to longer process time which equals cost.
-90% of ASIC design starts use wire-bonding due to its low cost.
- Wire-bonding has large parasitic inductance that must be addressed.

Our Solution

"Encode Off-Chip Data to Avoid Inductive Cross-talk \& Power Consumption"

- Avoid the following cases:

1) Excessive switching in the same direction
2) Excessive X-talk on a signal when switching
3) Excessive X-talk on signal when static
4) At the same time, limit the number of transitions

Our Solution

- This results in:

1) A subset of vectors is transmitted that avoids inductive X-talk \& power.
2) The off-chip bus can now be ran at a higher data rate.
3) The subset of vectors running faster can achieve a higher throughput over the original set of vectors running slower.

Agenda

1) Inductive X-talk \& Power
2) Terminology
3) Methodology
4) Experimental Results
5) Conclusion

1) Inductive X-Talk

Supply Bounce

-The instantaneous current that flows when signals switch induces a voltage across the inductance of the power supply interconnect following:

$$
V_{b n c}=L \cdot\left(\frac{d i}{d t}\right)
$$

-When more than one signal returns current through one supply pin, the expression becomes:

$$
V_{b n c}=L \cdot \sum_{j}\left(\frac{d i}{d t}\right)
$$

NOTE: Reducing the number of signals switching in the same direction at the same time will reduce the supply bounce.

1) Inductive X-Talk

Glitching

- Mutual inductive coupling from neighboring signals that are switching cause a voltage to induce on the victim that is static:

$$
V_{g l i t c h}^{i}= \pm M_{i k} \cdot\left(\frac{d i_{k}}{d t}\right)
$$

-The net coupling is the summation from all neighboring signals that are switching:

$$
V_{\text {glitch }}^{i}=\sum_{k=1}^{m} \pm M_{i k} \cdot\left(\frac{d i_{k}}{d t}\right) \quad M_{i k}=K_{i k} \cdot \sqrt{L_{i} \cdot L_{k}}
$$

NOTE: The mutual inductive coupling can be canceled out when two neighbors of equal $K_{i k}$ switch in opposite directions. Also, $K_{i k}$ is the mutual inductive coupling coefficient

1) Inductive X-Talk

Edge Degradation

- Mutual inductive coupling from neighboring signals that are switching cause a voltage to be induced on the victim that is also switching. This follows the same expression as glitch coupling:

$$
V_{\text {glitch }}=\sum_{1}^{k} \pm M_{1 k} \cdot\left(\frac{d i_{k}}{d t}\right)
$$

- The mutual inductive coupling can be manipulated to cause a positive (negative) glitch for a rising (falling) signal.
- Mutual coupling can thus be exploited so as to help the transition resulting in a faster rise-time or fall-time (alternately, to not hinder the risetime of the transition)

1) Power

Power Consumption

- The power consumed in the output stage is proportional to the capacitance being driven, the output voltage swing, and the switching frequency.

$$
p_{p i n}=C \cdot V_{D D}^{2} \cdot f
$$

NOTE: Power is proportional to the number of switching pins.
2) Terminology

Define the following: $n=\quad$ width of the bus segment where each bus segment consists of $\boldsymbol{n}-2$ signals and 1 Vid and 1 Vss.
$j=\quad$ the segment consisting of an n-bit bus. j is the segment under consideration.
$j-1$ is the segment to the immediate left.
$j+1$ is the segment to the immediate right. each segment has the same Vdd/Vss placement.
2) Terminology

Define the following:
$v_{i}^{j}=\quad$ the transition (vector sequence) that the $i^{\text {th }}$ signal in the $j^{\text {th }}$ segment is undergoing, where

$$
\begin{aligned}
& v_{i}^{j}=\mathbf{1}=\text { rising edge } \\
& v_{i}^{j}=\mathbf{- 1}=\text { falling edge } \\
& v_{i}^{j}=\mathbf{0}=\text { signal is static }
\end{aligned}
$$

This 3-valued algebra enables us to model mutual inductive coupling of any sign

2) Terminology

Define the following coding constraints:
Supply Bounce
if v_{i}^{j} is a supply pin, the total bounce on this pin is bounded by $\boldsymbol{P}_{b n c}$.
$P_{b n c}$ is a user defined constant.

Glitching
if v_{i}^{j} is a signal pin and is static ($v_{i}^{j}=\mathbf{0}$), the total magnitude of the glitch from switching neighbors should be less than $P_{0} . P_{0}$ is a user defined constant.

Edge Degradation

if v_{i}^{j} is a signal pin and is switching $\left(v_{i}^{j}=1 /-1\right)$, the total magnitude of the coupling from switching neighbors should be greater than P_{1} / P_{-1}. This coupling should not hurt (should aid) the transition. P_{1} / P_{-1} is a user defined constant.

2) Terminology - Power

Define the following coding constraints:

Power
for a given segment \boldsymbol{j}, the total power consumption on that segment is bounded by Ppower.
P power is a user defined constant.

2) Terminology

Also define the following:

$$
\begin{array}{ll}
p=\quad & \begin{array}{l}
\text { how far away to consider coupling } \\
\left(\text { ex., } p=3, \text { consider } K_{11}, K_{12}, \text { and } K_{13}\right. \text { on each side of } \\
\text { the victim) }
\end{array} \\
k_{q}=\quad & \begin{array}{l}
\text { Magnitude of coupled voltage on pin } i \text { when its } q^{\text {th }} \\
\text { neighbor } p \text { switches: }
\end{array}
\end{array}
$$

$$
k_{q}=\left|M_{i p} \cdot\left(\frac{d i_{p}}{d t}\right)\right|
$$

3) Methodology

\cdot For each pin v_{i}^{j} within segment j, we will write a series of constraints that will bound the inductive cross-talk magnitude.
-The constraints will differ depending on whether v_{i}^{j} is a signal or power pin.
-The coupling constraints will consider signals in adjacent segments

3) Methodology - Signal Pin Constraints

Glitching : coupling is bounded by P_{0}

Example:

$v_{2}{ }^{j}=0$, and $\boldsymbol{p}=3$. This means the three adjacent neighbors on either side of v_{2}^{j} need to be considered $\left(v_{4}^{j-1}, v_{0}^{j}, v_{1}^{j}, v_{3}^{j}, v_{4}^{j}, v_{0}^{j+1}\right)$.

Note we use modulo n arithmetic (and consider adjacent segments as required).

$$
\begin{aligned}
v_{2}^{j}= & 0 \text { (static) } \\
& -P_{0} \leq k_{3} \cdot\left(y / 4^{-1}\right)+k_{2} \cdot\left(v_{0}^{j}\right)+k_{1} \cdot\left(v_{1}^{j}\right)+k_{1} \cdot\left(v_{3}^{j}\right)+k_{2} \cdot\left(v_{4}^{j}\right)+k_{3} \cdot\left(y_{0}^{1+1}\right) \leq P_{0}
\end{aligned}
$$

The constraint equation is tested against each possible transition and the transitions that violate the constraint are eliminated.

3) Methodology - Signal Pin Constraints

Edge Degradation : coupling is bounded by \boldsymbol{P}_{1} and \boldsymbol{P}_{-1}

Example:

$v_{2}{ }^{j}=1$ or -1 , and $p=3$. This means the three adjacent neighbors on either side of v_{2}^{j} need to be considered $\left(v_{4}^{j-1}, v_{0}^{j}, v_{1}^{j}, v_{3}^{j}, v_{4}^{j}, v_{0}^{j+1}\right)$.

$v_{2}{ }^{j}=-1$ (falling) 0

$$
k_{3} \cdot\left(v_{4}^{j} f^{\prime}\right)^{(f a l l i n g)^{0}}+k_{2} \cdot\left(y_{0}^{\prime}\right)^{0}+k_{1} \cdot\left(v_{1}^{j}\right)+k_{1} \cdot\left(v_{3}^{j}\right)+k_{2} \cdot\left(y_{4}^{\prime}\right)+k_{3}^{0} \cdot\left(v_{y}^{j} y^{\prime}\right)^{0} \leq P_{-1}
$$

Again, the constraint equations are tested against each possible transition and the transitions that violate the constraints are eliminated.
3) Methodology - Power Pin Constraints

Supply Bounce : coupling is bounded by $\boldsymbol{P}_{\text {bnc }}$

Example:

$v_{0}{ }^{j}=$ VDD or Vss. The total number of switching signals that use $v_{0}{ }^{j}$ to return current must be considered. Due to symmetry of the bus arrangement, signal pins will always return current through two supply pins. i.e., $\left(v_{0}^{j-1}\right.$ and $\left.v_{0}{ }^{j}\right)$ or $\left(v_{4}{ }^{j}\right.$ and $\left.v_{4}^{j+1}\right)$. This results in the self inductance of the return path being divided by 2 . Let $\mathrm{z}=|L d i / d t|$ for any pin. Then, $v_{0}{ }^{j}=\mathbf{V D D}$
(z/2) $\cdot\left(\#\right.$ of v_{i}^{j} pins that are 1$) \leq P_{b n c}$
$v_{4}{ }^{j}=\mathbf{V s s}$
(z/2) $\cdot\left(\#\right.$ of v_{i}^{j} pins that are -1$) \leq P_{\text {bnc }}$

3) Methodology - Power Constraints

Power Consumption : consumption is bounded by Ppower
Example:
For segment \boldsymbol{j}. The total number of switching signals can be constrained to reduce power.

Segment j
(\# of v_{i}^{j} pins that are 1 or -1) $\leq P_{\text {power }}$
3) Methodology - Constructing Legal Vectors Sequences

- For each bit in the $\boldsymbol{j}^{\boldsymbol{t h}}$ segment bus, constraints are written.
- If the pin is a signal, $\mathbf{3}$ constraint equations are written;
$-v_{0}{ }^{j}=0$, the bit is static and a glitching constraint is written
$-v_{0}{ }^{j}=1$, the bit is rising and an edge degradation constraint is written.
$-v_{0}^{j}=-1$, the bit is falling and an edge degradation constraint is written.
- If the pin is VdD, 1 constraint equation is written to avoid supply bounce.
- If the pin is Vss, 1 constraint equation is written to avoid ground bounce.
- For the segment, 1 constraint equation is written to constrain power.

3) Methodology - Constructing Legal Vectors Sequences

- This results in the total number of constraint equations written is:

$$
(3 \cdot n-3)
$$

- Each equation must be evaluated for each possible transition to verify if the transition meets the constraints. The total number of transitions that are evaluated depends on n and p :

$$
3^{(n+2 p-6)}
$$

- This follows since there are $n-2$ signal pins in the segment j, and $2 p-4$ signal pins in neighboring segments.
- The values of n and p are small in practice, hence this is tractable.

3) Methodology - Constructing the CODEC

- The remaining legal transitions are used to create the CODEC.
- The total number of remaining legal transitions will depend on how aggressive the user-defined constants are chosen ($\boldsymbol{P}_{0}, \boldsymbol{P}_{1}, \boldsymbol{P}_{-1}, \boldsymbol{P}_{\text {bnc }}, \boldsymbol{P}_{\text {power }}$)
- From the remaining legal transitions, find the effective bus width m that can be encoded using a physical bus of width n, using a memorybased CODEC.
- Utilize a fixpoint computation

3) Methodology - Constructing the CODEC

- Represent remaining legal transitions in a digraph
- Algorithm to find CODEC:
- Let $n=$ size of physical bus
- Let $\boldsymbol{m}=$ size of effective bus
- Then the digraph of legal transitions of the \boldsymbol{n} bit bus can encode an \boldsymbol{m} bit bus ($\boldsymbol{m}<\boldsymbol{n}$) iff
-We can find a closed set S of nodes such that
- $|S| \geq 2^{m}$
- Each vertex s in S has at least 2^{m}
out-edges (including self-edges) to vertices s ' in S
- Now we can synthesize the encoder
 and decoder (memory based).

4) Experimental Results - 5 Signal Pins

$$
\text { Example Bus: } \quad \mathrm{n}=7, \mathrm{p}=\mathbf{2}
$$

$\underline{\mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{-1}, \mathbf{P}_{\text {bnc }}}$
Aggressive Encoding
5% of Vod
Non-Aggressive Encoding
12.5\% of VdD

Power Encoding
20\% of Max
4) Experimental Results - Constraint Equations
\# of Constraints $=(3 n-3)=12$

1) $\mathbf{v}_{0}{ }^{j}=V_{D D} \quad \rightarrow \quad(L / 2) \cdot\left(\#\right.$ of \mathbf{v}_{i}^{j} pins that are 1$) \leq P_{\text {bnc }}$
2) $\mathbf{v}_{1}{ }^{j}=1 \quad \rightarrow \quad k_{1} \cdot\left(v_{2}{ }^{j}\right)+k_{2} \cdot\left(\mathbf{v}_{3}{ }^{j}\right) \geq P_{1}$
3) $\mathbf{v}_{1}{ }^{j}=-1 \quad \rightarrow \quad k_{1} \cdot\left(v_{2}^{j}\right)+k_{2} \cdot\left(v_{3}^{j}\right) \leq P-1$
4) $\mathbf{v}_{1}{ }^{\mathrm{j}}=\mathbf{0} \quad \rightarrow \quad-\mathrm{P}_{0} \leq \mathrm{k}_{1} \cdot\left(\mathrm{v}_{2}{ }^{\mathrm{j}}\right)+\boldsymbol{k}_{2} \cdot\left(\mathrm{v}_{3}{ }^{\mathrm{j}}\right) \leq \mathrm{P}_{0}$
5) $\mathbf{v}_{2}{ }^{\mathbf{j}}=\mathbf{1} \quad \rightarrow \quad k_{1} \cdot\left(v_{1}{ }^{j}\right)+k_{1} \cdot\left(v_{3}^{j}\right) \geq P_{1}$
6) $\mathbf{v}_{2}{ }^{\mathbf{j}}=-\mathbf{1} \quad \rightarrow \quad \mathrm{k}_{1} \cdot\left(\mathrm{v}_{1}{ }^{\mathbf{j}}\right)+\mathrm{k}_{1} \cdot\left(\mathbf{v}_{3}^{\mathrm{j}}\right) \leq \mathrm{P}_{-1}$
7) $\mathbf{v}_{2}{ }^{j}=\mathbf{0} \quad \rightarrow \quad-P_{0} \leq k_{1} \cdot\left(v_{1}{ }^{j}\right)+k_{1} \cdot\left(v_{3}{ }^{j}\right) \leq P_{0}$
8) $\mathbf{v}_{3}{ }^{\mathbf{j}}=\mathbf{1} \quad \rightarrow \quad k_{2} \cdot\left(v_{1}{ }^{j}\right)+k_{1} \cdot\left(v_{2}{ }^{j}\right) \geq P_{1}$
9) $\mathbf{v}_{3}{ }^{\mathbf{j}}=-1 \quad \rightarrow \quad k_{2} \cdot\left(v_{1}{ }^{\mathbf{j}}\right)+k_{1} \cdot\left(v_{2}{ }^{\mathbf{j}}\right) \leq P_{-1}$
10) $\mathbf{v}_{3}{ }^{\mathrm{j}}=\mathbf{0} \quad \rightarrow \quad-\mathrm{P}_{0} \leq \mathrm{k}_{2} \cdot\left(\mathrm{v}_{1}{ }^{\mathrm{j}}\right)+\mathrm{k}_{1} \cdot\left(\mathrm{v}_{2}{ }^{\mathrm{j}}\right) \leq \mathrm{P}_{0}$
11) $\mathrm{v}_{4}^{\mathrm{j}}=$ Vss $\quad \rightarrow \quad(\mathrm{L} / 2) \cdot\left(\#\right.$ of $v_{\mathrm{i}}{ }^{\mathbf{j}}$ pins that are -1$) \leq P_{\text {bnc }}$
12)

(\# of v_{i}^{j} pins that are $\mathbf{- 1}$ or 1) $\leq P_{\text {power }}$
4) Experimental Results - CASE 1: Fixed di/dt

Transitions Eliminated due to Rule Violations

		Rule(s) Violated
Transition	$\underline{\text { Aggressive }}$	$\underline{\text { Non Aggressive }}$
011	violates 1,4	-
$0-1-1$	violates 4,11	-
101	violates 1,7	-
110	violates 1,10	-
111	violates $1,2,5,8$	violates 11
$11-1$	violates 1	-
$1-11$	violates 1	-
$1-1-1$	violates 11	-
$-10-1$	violates 7,11	-
-111	violates 1	-
$-11-1$	violates 11	-
$-1-10$	violates 10,11	-
$-1-11$	violates 11	-
$-1-1-1$	violates $3,6,9,11$	violates 1

4) Experimental Results - CASE 1: Fixed di/dt

- Encoded data avoids Inductive X-talk pattern

Overhead $=1-\frac{\text { Effective }}{\text { Physical }}=\frac{\mathbf{n}-\mathrm{m}}{\mathrm{m}}$

- Bus can be ran faster

4) Experimental Results - CASE 1: Fixed di/dt

Ground Bounce Simulation

4) Experimental Results - CASE 1: Fixed di/dt

Glitch Simulation

4) Experimental Results - CASE 1: Fixed di/dt

Edge Degradation Simulation

4) Experimental Results - CASE 2: Variable di/dt

- di/dt was swept for both the non-encoded and encoded configuration.
- the maximum di/dt was recorded that resulted in a failure.
- Failure : 5\% of VDD (Aggressive) and 12.5\% of VDD (Non-Aggressive)
- the maximum di/dt was converted to data rate and throughput.

Maximum di/dt:
Maximum data-rate per pin:
Effective bus width:
Total Throughput:
Improvement
Power Constraint (\% of Max)

Original	Aggressive	Non-Aggr
$8 \mathrm{MA} / \mathrm{s}$	$19.9 \mathrm{MA} / \mathrm{s}$	$37 \mathrm{MA} / \mathrm{s}$
$133 \mathrm{Mb} / \mathrm{s}$	$333 \mathrm{Mb} / \mathrm{s}$	$667 \mathrm{Mb} / \mathrm{s}$
5	4	2
$667 \mathrm{Mb} / \mathrm{s}$	$1332 \mathrm{Mb} / \mathrm{s}$	$1332 \mathrm{Mb} / \mathrm{s}$
-	100%	100%
100%	20%	20%

4) Experimental Results - ASIC Synthesis

- A 0.13um, TSMC ASIC process was used.
- Delay and Area Extracted

	Bus Size (m)	Style	
	-	aggressive	non-aggressive
Delay $(n s)$	2	0.170	N/A
	4	0.670	0.503
	6	1.150	0.955
Area $\left(u m^{2}\right)$	8	1.310	0.983
	2	22	N/A
	4	152	114
	6	614	509
	8	1,181	886

4) Experimental Results - FPGA Implementation

- A Xilinx, Virtex-II, 0.35um, FPGA was used.
- Delay and Area Extracted

	Bus Size (m)	Style
	-	aggressive \& non-aggressive
	2	0.351
Delay $(n s)$	4	1.020
	6	1.450
	8	1.610
	2	$<1 \%$
FPGA Usage	4	$<1 \%$
	6	$<1 \%$
	8	$<1 \%$
FPGA	2	$3 x, 2-$ Input FG's
Implementation	4	$6 x, 4-$ Input FG's
	6	$9 x, 6$-lnput FG's
	8	$12 x, 8$-Input FG's

5) Conclusion

- Using a single mathematical framework, inductive X-talk \& power constraints can be written that consider supply bounce, glitching, and edge degradation.
- This technique can be used to encode off-chip data transmission to reduce inductive X-talk \& power to acceptable levels.
- It was demonstrated that even after reducing the effective bus size, the improvement in per pin data-rate resulted in an increase in throughput compared to a non-encoded bus.

Thank you!

