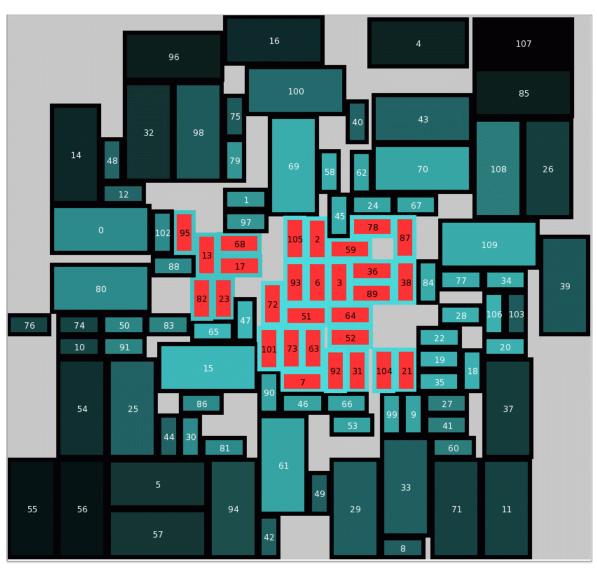
TAPHS: Thermal-Aware Unified Physical-Level and High-Level Synthesis

Zhenyu (Peter) Gu¹, Yonghong Yang², Jia Wang¹ Robert Dick¹, Li Shang² Northwestern Univ¹, Queen's Univ.² 01/27/2006

- Introduction & past work
- Motivating example
- System infrastructure overview
- Thermal-aware techniques
 - Architecture-level technique
 - Physical-level technique
- Experimental results
- Conclusion

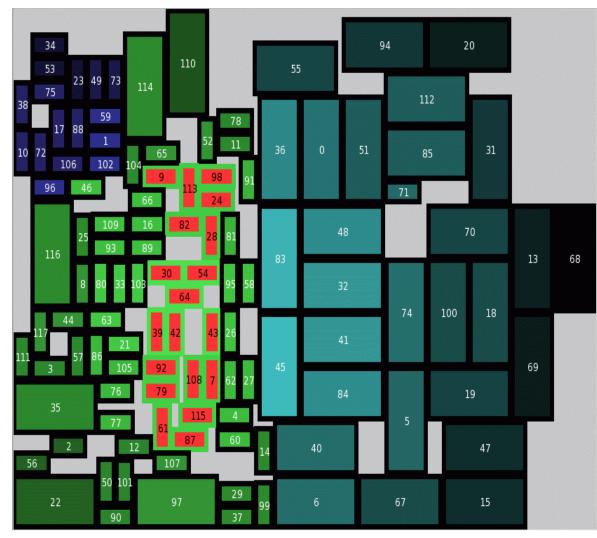
- Introduction & past work
- Motivating example
- System infrastructure overview
- Thermal-aware techniques
 - Architecture-level technique
 - Physical-level technique
- Experimental results
- Conclusion

Introduction & past work


- Thermal issues
 - Cooling costs
 - Reliability
 - Package costs
 - Performance
- Thermal-aware design
 - Requires a unified high-level and physicallevel design optimization
 - Incremental synthesis is promising

Introduction & past work

- High-level and physical-level co-synthesis
 - J. P. Weng and A. C. Parker 93
 - D. Thomas 00
 - L. Zhong and N.K.Jha, 02
 - A. Stammermann, et al., 03
 - Z. P.Gu, et al.,'05
- Thermal-aware analysis and design
 - K. Skadron, et al., 03
 - L. Shang, et al., 04
 - B. Goplen, et al., 03
 - J. Cong, et al., 04
 - R. Mukherjee, et al., 05

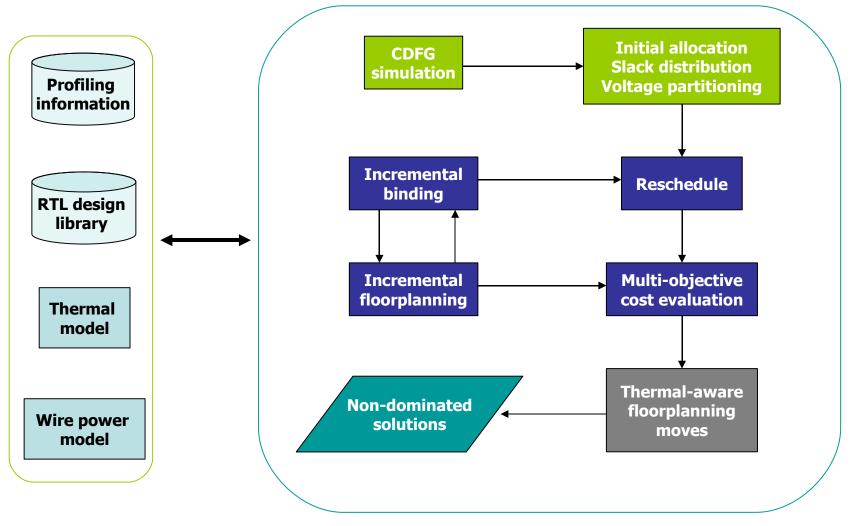

- Introduction & past work
- Motivating example
- System infrastructure overview
- Thermal-aware techniques
 - Architecture-level technique
 - Physical-level technique
- Experimental results
- Conclusion

Motivating examples

29 functional units have temperature higher than 85°C

Motivating examples

•3 voltage islands

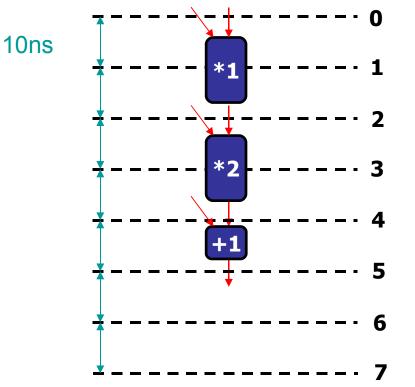

•19 functional units have temperature higher than 85°C

Motivating examples

- Unified high-level and physical-level thermal optimization is necessary
- Voltage partitioning reduces power consumption
- Thermal-aware floorplanning further reduces peak temperature
- Incremental synthesis is essential to reduce synthesis time

- Introduction & past work
- Motivating example
- System infrastructure overview
- Thermal-aware techniques
 - Architecture-level technique
 - Physical-level technique
- Experimental results
- Conclusion

System infrastructure overview



TAPHS¹¹

- Introduction & past work
- Motivating example
- System infrastructure overview
- Thermal-aware techniques
 - Architecture-level technique
 - Physical-level technique
- Experimental results
- Conclusion

Thermal-aware techniques

- Architecture-level
 - Voltage island
 - Reducing supply voltage increases circuit propagation delay
 - Overhead for voltage islands
 - Solution
 - Slack distribution
 - Voltage partitioning
- Physical-level
 - Voltage island generation
 - Thermal-aware swap operation

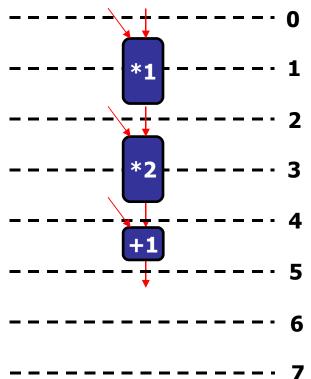
*1: d=16ns, c=4 *2: d=16ns, c=2 +1: d= 8ns, c=2

$$e_i = C_i v_i^2 = C_i \left(\frac{\omega_i}{K_i}\right)$$

for
$$\alpha = 2$$

 $E = \sum_{i \in p} C_i \left(\frac{d_i}{K_i}\right)^{\frac{2}{1-\alpha}}$
for $\alpha = 2$

Clock period = 10ns Shared slack = 2


Slack: difference between latest and earliest start time.

$$\min_{\substack{\forall i \in p \\ v_i}} \sum_{i \in p} C_i \left(\frac{d_i}{K_i}\right)^{\frac{2}{1-\alpha}}$$

- D: bound on path execution time
- p: set of all operations on the path
- d_i: delay of an operation's functional unit
- v_i : voltage of an operation's functional unit
- K_i: an execution time constant of an operation's functional unit
- α : alpha power law constant
- C_i: switched capacitance of functional unit i

$$\forall_{i \in p} d_i = \frac{D}{N} \left(\frac{\frac{C_1}{K_1^{\frac{2}{1-\alpha}}}}{\frac{C_i}{K_i^{\frac{2}{1-\alpha}}}} \right)^{\frac{1-\alpha}{1+\alpha}} \text{ or } \frac{D}{N} \sqrt[3]{\frac{C_i K_i^2}{C_1 K_1^2}} \quad \text{ for } \alpha = 2$$

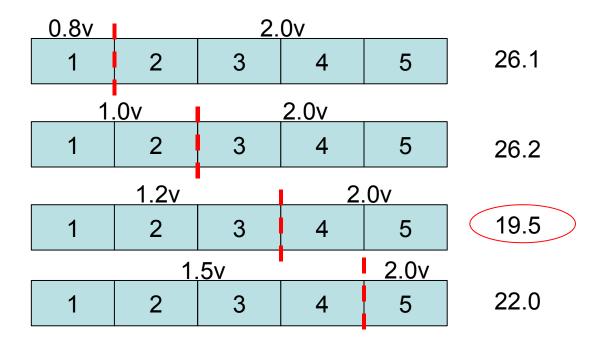
- C_i: switched capacitance of functional unit i
- K_i: an execution time constant
- D: bound on path execution time
- p: set of all operations on the path
- d_i: delay of an operation's functional unit
- $-\alpha$: alpha power law constant
- N: sum of the optimal delay ratio

- *1: d=16ns, c=4
- *2: d=16ns, c=2

Clock period = 10ns Shared slack = 2

- *1: d=16ns, c=4 *2: d=16ns, c=2
- +1: d= 8ns, c=2

*1: 3 cycles *2: 2 cycles +1: 2 cycles


Clock period = 10ns Shared slack = 2

Multiple voltage techniques

Motivating example

FUs	FU1	FU2	FU3	FU4	FU5
Slack vs. delay	1.1	0.7	0.5	0.3	0
V _{min} (V)	0.8	1	1.2	1.5	2
C(pf)	2.0	0.2	3.0	1.0	2.0

Multiple voltage techniques

Decreasing order of the slack

- Introduction & past work
- Motivating example
- System infrastructure overview
- Thermal-aware techniques
 - Architecture-level technique
 - Physical-level technique
- Experimental results
- Conclusion

Thermal-aware floorplanning

- Floorplan Representation
 - Adjacent Constraint Graph (ACG)
 - (Zhou & Wang 'ICCD04)
 - A constraint graph with exactly one geometric relationship between every pair of modules
 - Operation have straightforward, local meaning in physical space
- Algorithm
 - Use simulated annealing for initial floorplan
 - Greedy iterative improvement for re-optimization
- Cost function
 - Area
 - Pair-wise edge within same voltage island
 - Wire power consumption

Thermal-aware floorplanning

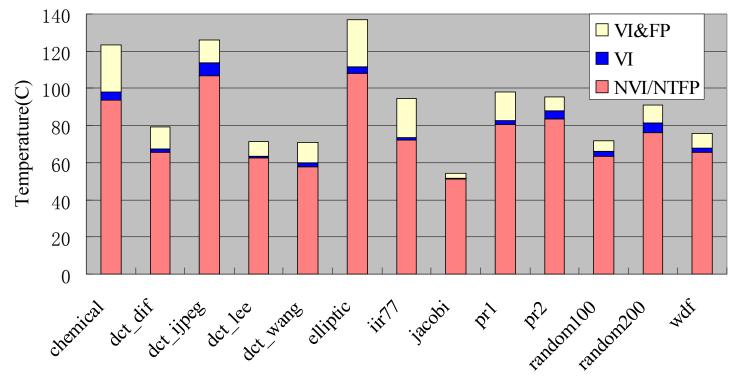
Thermal-aware swap operation

- Motivation: minimizing average power consumption and minimizing peak temperature conflict with each other
- Solution: thermal-aware swap operation that exchanges hot (high-power density) functional units with cool (low-power density) functional units within the same voltage island

- Introduction & past work
- Motivating example
- System infrastructure overview
- Thermal-aware techniques
 - Architecture-level technique
 - Physical-level technique
- Experimental results
- Conclusion

Thermal model

- Chip-package thermal model (Shang MICRO'03)
- Compared with COMSOL Multiphysics (FEMLAB): less than 2.5% estimation error on the Kelvin scale
- Two thermally conductive paths:
 - From the silicon die through the cooling package to the ambient environment
 - From the silicon die through the package to the printed circuit board
- Silicon thickness 200um
- Ambient temperature 45°C


Benchmarks: 13 benchmarks

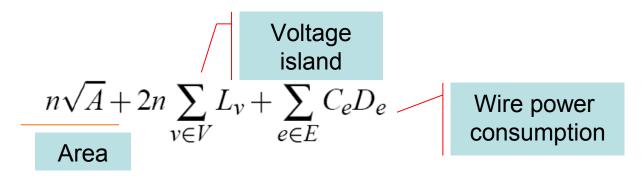
- Technology: TSMC 0.18um
- Jacobi, the largest widely used benchmark:
 24 MULs, 8 DIVs, 8 ADDs, 16 SUBs
- 2 large random benchmarks generated by TGFF (Dick'98)
 - Random100: 20 ADDs, 15 SUBs, 19 MULs
 - Random200: 39 ADDs, 44 SUBs, 36 MULs

	No voltage islands		Voltage islands			Thermal FP		
Example	Peak	Area	Power	Peak	Area	Power	Peak	Power
	T (°C)	(%)	(W)	T (°C)	(%)	(W)	T (°C)	(W)
dct_dif	79.0	87.9	0.85	67.3	92.5	0.60	65.6	0.55
	79.7	78.6	0.83	67.6	81.5	0.58	66.1	0.54
	80.3	83.7	0.85	69.8	83.4	0.61	67.4	0.57
	80.1	81.4	0.84	69.3	74.9	0.57	67.6	0.53
	81.7	80.7	0.86	69.9	80.0	0.60	68.4	0.56
	82.9	76.0	0.87	71.3	78.8	0.63	68.5	0.57
	84.5	68.8	0.87 <	71.4	75.8	0.62 🤇	68.7	0.57

	No voltage islands			Valta aa ialan da			The array of TD	
		Shage Islands		Voltage islands			Thermal FP	
Example	Peak	Area	Power	Peak	Area	Power	Peak	Power
	T (°C)	(%)	(W)	T (°C)	(%)	(W)	T (°C)	(W)
dct_wang	70.7	101.3	0.70	59.8	109.8	0.42	57.6	0.39
	68.2	97.5	0.68	59.1	116.0	0.43	57.9	0.40
	68.5	108.1	0.68	60.1	108.0	0.42	58.1	0.39
	70.4	89.1	0.70	59.8	102.8	0.44	58.3	0.41
	71.3	100.5	0.69	61.1	100.1	0.45	59.3	0.42
	70.3	101.0	0.70	61.2	113.0	0.45	59.6	0.42
	72.0	85.1	0.72	63.1	109.8	0.48	60.7	0.43
	72.4	77.4	0.70	65.2	91.8	0.47	61.4	0.42
	72.0	88.9	0.72	66.3	90.8	0.48	63.6	0.43
	70.8	86.6	0.70 <	66.7	78.2	0.47	64.5	0.43

Peak temperature comparison

Benchmarks


- Introduction & past work
- Motivating example
- System infrastructure overview
- Thermal-aware techniques
 - Architecture-level technique
 - Physical-level technique
- Experimental results
- Conclusion

Conclusions

- Presented a thermal-aware high-level synthesis system, which supports tight integration with thermal model and physical design
- Experimental results indicate that TAPHS is able to trade off peak temperature, IC area, and power consumption
- Thermal-aware design needs tight interaction between high-level and physical-level synthesis
- Incremental algorithm can save synthesis time by reusing and building upon high-quality previous physical design solutions that required a huge amount of time and effort to produce

Q & A?

Thermal-aware floorplanning

- A: area
- n: number of functional units
- v: a pair of functional units sharing the same voltage
- L_v : separation between a pair of functional units sharing the same voltage
- e: an interconnect line
- C_e: unit-length switched capacitance for the data transfer along e
- D_e : length of interconnect e