Using Speculative Computation and
Parallelizing techniques to improve
Scheduling of Control based Designs

Roberto Cordone Fabrizio Ferrandi, Gianluca Palermo, Marco
D. Santambrogio, Donatella Sciuto

Universita Statale di Milano - DTI Politecnico di Milano - DEI

ASP-DAC 2006 Yokohama, Japan 24-27 January 2006

2 Previous approaches on scheduling with speculation

2 Analysis of IRs for HLS:
PDG/SDG
CDFG/HTG

2 Scheduling:
Speculation
Transformation

2 Scheduling ILP formulation:
new conditional resource sharing constraint
Speculative computation

0 Experimental results

Previous approaches

0 Code motion techniques

- SW compilers: Fisher81, Nicolau89
HLS: Santos99, Rim95

0 Speculation: Jha99, Gupta03, Brewer96

2 No exact methods with the exception of Brewer96
- CDFG, Unit time, no pipeline unit

0 Previous ILP-based scheduling (Gebotys93): does not well
express control constraints

0 Intermediate Representation: CDFG, HTG

What PDGs and SDGs are

0 PDGs are the starting point: they represent a single procedure

a0 A PDGs is a directed graph

Its nodes represent:
- Statements
- Predicates (loop/control conditions)

Its edges represent:
- Data dependencies
- Control dependencies

o A System Dependency Graph SDG is a collection of PDGs connected
by call and parameter edges
o System Dependency Graphs:
Abstract code representation
Explicit representation of all dependencies between statements
Easy detection of parallelizable code

Control dependencies

(]

Intuition:

Node A is control dependent on node B if B may change
whether A is executed or not

o Formal definition (Ferrante et al.):

Y is control dependent on X iff:

- There exists a path P from X to Y in the CFG with any node Z in P
post-dominated by Y

- X is not post-dominated by Y

CFG vs CDG (Ferrante + Girkar & Polychronopoulos)

ENTRY

IF node

HTG (Gupta et al.)

void
gcd (int xi, int yi, int *ou)
{
int x, y, temp;
X = Xi;
y =yi;
while (x >0)
{ if(x<=y)
{ temp =Xx;
X =Yy-X;
y = temp;
} else
X=X-Y;
3

*ou =y;

HTG 0

HIG 1

HTG 2

BB3

if cond = (x <y)

while cond = (x> 0)

BB9

(Fou) =y

Transformations vs scheduling
Gupta et al.

2 Across Hierarchical Blocks
movement of operations across entire hierarchical blocks
2 Speculation

unconditional execution of operations that were originally
supposed to have executed conditionally

2 Reverse Speculation

where operations before conditionals are moved into subsequent
conditional blocks and executed conditionally

0 Conditional Speculation

in which an operation is moved and duplicated up into preceding
conditional branches and executed conditionally

Across Hierarchical Blocks

HTG 0 "' N <
ENTRY EXIT

HTG_1

BBO

cond=a<b

b:e!R

\ltrailblazing

X=a+b

x=a-b ||,
|
)

BB4

BB5 7

y=e+f

Z=y+X

HTG 0

HTG 1

BBO
¢=1nl <in2
v_ _
- ~

\ AN

\ \

\ Speculation Fpeculation

] /
/ /
/
/
BB2 - BB3,”
a=1inl +in2 a=inl - in2
v \ 3
N
N \
\ \ \

\Conditionally \Conditionally
Speculated | Speculate

/
l / Pl
;. — — — -

VZd
BBS

BB4

ou=a-in3

-10 -

&,. Reverse Speculation

HTG 0

HTG 1

BBO

c¢=1inl <in2

b=inl +in2

Reverse
IISpc“:culation

d=inl +in3 B3

e=il+d x=in3+b

=in3 +e

BBS

ou=Xx+in2

-11 -

Scheduling: ILP formulation (Gebotys)

Considered scheduling problem
min(w)
subject to
w22,(j+C, -1)x; . Jed, keK

0 where

w is a variable representing the last control step

X; . =1 when operation k starts executing at control step j and it
is assighed to a functional unit of type i and

C,; 1s the execution time of operation k mapped on functional
unit i

L, . is the initiation time of operation k mapped on functional
unit i

-12 -

Scheduling constraints (Gebotys)

0 Assignment constraint
Each operation is assigned to a specific control step

L L Xk a0 k0K

0 Precedence constraint

Z U z X pw z X, ;s 1 Node packmg
7 O < e o ¢, i +1 0
Dasap(k")js J"!S alap(k') asc;jp(\/f’)<Jl<(a/aP(k)] prOblem

Ok OK, k’OK, j. OJsubject to

kO k’, kON, k’OW and
max(asap(k’), asap(k)+min.(C,, i)-1) < jc < min(alap(k’), alap(k)+max.(C,, i)-1)

-13 -

a

a

a

Conditional branch

Gebotys et al.

for each path defined a
capacity constraints

Our approach
recursive capacity constraints

z, 5 SN, :i0Lj0J

J

; X/',J",k t Z z/',j,B' S Zi,j,B
KTOp j'=J-Li+1 BTB

0i0Lj0J,B08,POB

branching
block

B2

-14 -

end branch

Y
B
M
N
o]
end branch

branching

wath

block

path

1,2

(]

To take into account speculation we modify the resource
constraint:

J—Lgi+]
> (E Z Xif'k T Z Zij 5) ‘UE"FH(I -2 2 Ir,r"ks)é
: 4 =F *51"_1 :

PeB \ k=P J .-'

icl,jeJ BeB'\{By}

0 M is a constant large enough to make the constraint
redundant when no speculation is performed

-15-

SDG & Resource constraint with
speculation

-16 -

Branch and Cut

2 Based on the open source package COIN-OR
(http://www.coin-or.org)
2 provides a set of tools among which an ILP solver with
the capability of generating the most important families
of valid inequalities.

2 The inequalities effective to solve the scheduling
problem are:
- Gomory
- Clique
- Probing
- Knapsack

-17 -

http://www.coin-or.org/

Experimental Results

0 compare three different scheduling techniques
SPARK: Gupta et al. Framework
LIST: standard list based adapted to SDG
ILP: our ILP formulation of the scheduling problem with
speculation

0 Benchmarks:
A set of standard HLS benchmarks

Two media benchmarks:
- MotionVector
- Adpcm(Decode/Encode)

-18 -

Experimental Results: speculation for

ARCH1
1-Add, 1-5ub, SPARK LIST ILP
1-Mul, 1-Cmp,
1-Sh, 2[] CS Time(s) CS Time(s) CS Time(s)
Kim 10 0.030 10 0.013 10 0.169
Sehwa 8 0.046 9 0.015 8 0.332
Maha 9 0.049 9 0.013 9 0.125
MotionVector 15 0.309 12 0.173 11 28.2
AdpcmDecode 18 0.110 13 0.212 13 3.357
AdpcmEncode 18 0.144 14 0.210 14 2.011

-19 -

Experimental Results: speculation for

ARCH?2
1-Add, 1-5ub, SPARK LIST ILP
1-Mul, 2-Cmp,
1-Sh, 2[] CS Time(s) CS Time(s) CS Time(s)
Kim 10 0.054 10 0.012 9 0.163
Sehwa 7 0.045 7 0.014 7 0.132
Maha 9 0.054 9 0.012 9 0.129
MotionVector 13 0.274 12 0.177 11 26.2
AdpcmDecode 15 0.122 11 0.190 11 0.807
AdpcmEncode 18 0.145 13 0.519 13 1.237

-20 -

Experimental Results: speculation for

ARCH3
2-Add, 2-5ub, SPARK LIST ILP
1-Mul, 2-Cmp,
1-Sh, 2[] CS Time(s) CS Time(s) CS Time(s)
Kim 8 0.036 8 0.010 8 0.074
Sehwa 6 0.049 6 0.013 6 0.085
Maha 9 0.054 9 0.011 9 0.123
MotionVector 10 0.323 10 0.162 9 0.968
AdpcmDecode 15 0.114 10 0.164 10 0.474
AdpcmEncode 18 0.148 13 0.367 13 0.843

-21 -

Experimental Results: B&B vs B&C

Set of benchmarks enriched with some well known data-
intensive high level synthesis benchmarks

Two architecture considered: ARCH1 and ARCH3
ILP branch & Bound:

- Solution proved optimally in less than 1000sec: 15 vs 11
ILP branch & Cut:
- Solution proved optimally in less than 1000sec: 24 VS 2

Further COIN-OR customization allow to optimally solve
all the problems

-22 -

Future works

2 Improve the GCC interface

0 Better support of reverse and conditionally speculation
techniques

2 Analysis of heuristics and inequalities to better support
B&C: approximations, lower bound estimations

2 Coin-0r branching customization

2 Analysis and integration of register binding, module and
interconnect allocation
2 Exploitation of SDG to perform partitioning for

HW/SW Codesign
Dynamic reconfiguration

-23-

Any Questions?

ferrandi@elet.polimi.it

-24 -

