
Worst Case Execution Time
Analysis for Synthesized
Hardware

Junhee Yoo, Xingguang Feng
and Kiyoung Choi,
(School of EECS, Seoul National University)

Euiyoung Chung and Kyumyung Choi
(System LSI Division, Samsung Electronics)

Presented on ASPDAC 2006

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 2

Contents
 Motivation

 Why do we need such a tool?
 Limitations of previous approaches

 Related work
 Details of the analysis flow

 Flow overview
 Hardware model
 ILP formulation
 Execution constraints

 Experiment results
 Conclusions

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 3

Hardware/Software
partitioner

Partitioned
results

Motivation

Y. Ahn et al, “An Interactive Environment for SoC Design Starting from KPN in SystemC, Global Signal Processing Expo.,
Oct.2004

SystemC KPN
Model

C Code
generator

C code for each
function

How do we do
this statically?

Support both
simulation-based
and worst-case

estimation

Hardware
estimator

Software
estimator

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 4

Previous implementations
 Simulation-based estimation

 Needs a lot of simulation effort
 Cannot guarantee the worst-case execution time

 Naïve loop number calculation

for(i=0; i<a; i++) {
 …
}

for(j=0; j<b; j++) {
 …
}

10 cycles

15 cycles

total cycles : 10 * 32 + 15 * 32 = 800

maximum 32

maximum 32

The method of most
commercial

behavior-level
synthesis tools

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 5

#define NUM_SAMPLES 1024
void karplus_strong(
 unsigned int n, /* … */){
 int i;
 for (i = 0; i < n; i++){
 /* … */
 }
 /* … */
 for (i = n + 1;
 i < NUM_SAMPLES; i++) {
 /* … */
 }
}

n iterations, worst case 1023

1023-n iterations, worst case 1023

n < NUM_SAMPLES

Motivational example

Using the naïve approach, the number of iterations are overestimated approximately 2x.

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 6

Motivational example

T F

T F

+
-

*

+

*

*

+
-

>

=

+

Dead path

Actual worst case execution path

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 7

Related work
 Y. Li et al, “Efficient microarchitecture modeling and

path analysis for real-time software”, IEEE RTSS
1995
 Presents the basic idea of worst-case execution time

(WCET) analysis based on ILP (integer linear
programming)

 Software WCET tools
 Cinderella, http://www.princeton.edu/~yauli/cinderella-2.0/
 SymTA/s, http://www.symta.org/

 To the best of our knowledge, there was no WCET
analysis tool for (behavior-level) synthesized
hardware

http://www.princeton.edu/~yauli/cinderella-2.0/
http://www.symta.org/

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 8

Added-in static analysis flow

Hardware analysis flow

C to CDFG

C code

CDFG synthesizer

CDFG simulator

Simulation
results

Testbench generator

CDFG analyzer

Analysis results

Constraint extractor

Loop constraintsTestbench

For equivalence check
and performance

evaluation

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 9

Hardware restriction

 Partitions the analysis into two sub-problems
 Scheduling analysis of shared bus (beyond the scope of this paper)
 Worst case execution time analysis of synthesized hardware

 Using a DMA for on-chip communication is reasonable enough for many
applications

Shared bus

Synthesized
hardware

Private
memory …

Synthesized
hardware

Private
memory

DMA
controller

Shared
memory

Processor

Processor
acquires lock
of the
hardware

The processor sets the
DMA controller to send
the data from shared
memory to the private
memory of the hardware

Processor triggers
the hardware to
run. The hardware
does the operation
without accessing
the shared bus

The DMA controller
returns the data to the
shared memory

 Restricts global communication while the hardware runs

 Example:

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 10

ILP formulation

100 3 ≤≤ x

1097

8766

755

644

5433

93822

211

1 1

ddx
dddx

ddx
ddx

dddx
ddddx

ddx
d

==
=+=

==
==

+==
+=+=

==
=

15 xx ≤

From Y. Li et al, “Efficient microarchitecture modeling and path analysis for real-time software”, IEEE RTSS 1995

/* k >= 0 */
s = k;
while (k < 10)
{
 if (ok)
 j++;
 else {
 j = 0;
 ok = true;
 }
 k++;
}
r = j;

Loop is
executed at

most 10 times

The ‘else’ path is
taken only once
per execution

di, xi: Number of times the control path is taken
ci: Number of cycles that it takes to execute the block

s = k;

while (k < 10)

if (ok)

j++; j = 0;
ok = true;

k++;

r = j;

d1

d2

d3

d4
d5

d6 d7

d8

d9

d10

x1

x2

x3

x4
x5

x6

x7

∑ iixcGoal : Maximize

‘inflow’
= ‘outflow’
= number of times the block is
executed

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 11

Execution constraints
 Constraints can be either user-given or statically

analyzed by the analyzer
/*##constraints
 loop1 < 1200;
 b1(true) < b2(true);
*/
int i;
for(i=0; i<a; i++){ //##label:loop1
 if(data[i] == TYPE_A) { //##label:b1
 int j;
 for(j=0; j<16; j++) {
 /* some code */
 }
 }
 //##label:b2
 else if(data[i] == TYPE_B) {
 /* some code */
 }

user-given
constraints

label
s
label

s

label
s

Analyzed
constraint

(loop body will run
16 * b1(true) times)

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 12

Tool implementation
 C language parsing and optimization done using an

in-house modified version of SUIF1 (http://
suif.stanford.edu/)

 Based on an in-house behavior level synthesis tool
from our previous work
 Tool implemented in standard C++ @ x86 Linux

 GLPK (GNU Linear Programming Kit) for ILP solving
(http://www.gnu.org/software/glpk/glpk.html)

 Written both as a subroutine that can be used by
other tools, and an independent application

http://suif.stanford.edu/
http://suif.stanford.edu/
http://suif.stanford.edu/
http://www.gnu.org/software/glpk/glpk.html

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 13

Experiment results
 Two functions from h.263 encoder

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 100 200 300 400 500

sim ulat ion ID

cy
cl

es

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

sim ulat ion ID

cy
cl

es

SAD_Macroblock Quantize

Blue dots represent simulation results, while the magenta line represents the analyzed worst-case execution time.

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 14

Experiment results (2)
#define NUM_SAMPLES 1024
#define COMB_FILTER(cn,cn1,v0,vn,vn1) \
 ((((v0)-MID)*NSF + ((vn)-MID)*(cn) \
 +((vn1)-MID)*(cn1) /256) + MID)
void karplus_strong(int cn, int cn1,
 unsigned int n, short block[NUM_SAMPLES],
 short blockprev[NUM_SAMPLES]){
 int i;
 for (i = 0; i < n; i++){
 block[i] =
 COMB_FILTER(cn, cn1, MID,
 blockprev[NUM_SAMPLES + i - n],
 blockprev[NUM_SAMPLES + i - n - 1]);
 }
 block[n] =
 COMB_FILTER(cn, cn1, MID, block[0],
 blockprev[(NUM_SAMPLES - 1)]);
 for (i = n + 1; i < NUM_SAMPLES; i++) {
 block[i] =
 COMB_FILTER(cn, cn1, MID, block[i - n],
 block[i - n - 1]);
 }
}

15200
15400
15600
15800
16000
16200
16400
16600

0 20 40 60 80 100 120
simulation ID

cy
cle

s

Naïve calculation : 31,731 cycles
Our approach : 16,385 cycles

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 15

Conclusions
 Contribution

 Presenting a method of doing worst-case execution time of
synthesized hardware

 Still more work to be done
 More research on automatic constraint detection
 Improving the behavior level synthesis tool
 Worst case power estimation
 Integrating bus scheduling and worst case estimation

 For questions, please contact Junhee Yoo,
ihavnoid@poppy.snu.ac.kr

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 16

s = k;

r = j;

‘if’ : k < 10

‘do-while’

k++;
loop condition : k < 10?

‘if’ : (ok)

Dealing with hierarchical structures

/* k >= 0 */
s = k;
if (k < 10){
 do {
 if (ok)
 j++;
 else {
 j = 0;
 ok = true;
 }
 k++;
 }while (k < 10);
}
r = j;

body

cond1

loop1

cond2

body = 1
cond1 = body
cond1 = cond1.true + cond1.false
cond2 = cond2.true + cond2.false
loop1 = cond2 0 body <= loop1 <= 10 body cond2.false <= body

‘inflow’
= ‘outflow’
= number of times the block is
executed Loop is

executed at
most 10 times

The ‘else’ path is
taken only once
per execution

‘true’ ‘false’

‘true’
j++;

‘false’
j = 0;
ok = true;

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 17

FAQ : Isn’t adding constraints too difficult?

 No!
 Most constraints are trivial enough to be

automatically analyzed
 Approximately 70% of loops of h.263 encoder have fixed

number of iterations
 Most of the other loops also have data dependency, but are

trivial enough to be easily analyzed

 Although we may have missed some constraints, we
still have a result higher than worst case

Jan 27, 2006 J. Yoo et al, Worst Case Execution Time Analysis for Synthesized Hardware, ASPDAC 2006 18

Constraint optimization

Input trivial
constraints

Is worst
case fast
enough?

Put more effort on
constraint analysis

WCET analysis

Put more effort on
code optimization

Done!

WCET analysis

Is worst
case fast
enough?

Y

Y

N

N

