
CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

Lazy BTB: Reduce BTB Energy
Consumption Using Dynamic Profiling

YenYen--Jen ChangJen Chang
Dept. of Computer Science

National ChungHsing University, Taiwan

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

Outline

q Introduction

q Lazy BTB

q Experimental Results

q Conclusions

q Traditional BTB

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

1. Introduction

q The branch target buffer (BTB) is an essential component
to the high performance processors with immunity from
control hazard.

q In this paper, we propose an alternative BTB design, called
lazy BTBlazy BTB, to reduce the BTB energy consumption by
filtering out the redundant lookups.

q Due to the high frequency of lookup, however, the energy
dissipated in the BTB is usually considerable. For example,
the Pentium Pro consumes about 5%5% of the total processor
energy in the equipped 512-entry BTB.

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

2. Traditional BTB

q In the traditional BTB lookup scheme, because the fetch
engine has no sufficient information to distinguish the
branch instructions, the BTB has to be looked up every
instruction fetch.

 PC

instruction
cache

Branch Target Buffer

v BT TA PI
v: Valid Bit
BA: Branch Address
TA: Target Address
PI: Prediction Information

branch target address

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

Characteristics of the BTB Lookups

q Because the BTB lookup is necessary only for the branch
instructions, in the traditional BTB an overwhelming majority
of the lookups are redundant.

BTB Lookup Redundant Rate

50%

60%

70%

80%

90%

100%

adp
cm epi

c
g7

21 gsm jpe
g

mpeg
2

gh
ost

sci
rpt

Aver
age

Encoder
Decoder

q Measured from MediaBench, the BTB lookup redundant
rate is around 83%83% on average.

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

3. Lazy BTB

q The key idea behind our design is to look up the BTB only
when the instruction is likely to be a taken branch.

q Unlike the conventional BTB, we propose an alternative
BTB design, called lazy BTBlazy BTB, which aims to reduce the
number of redundant BTB lookups.

q The lazy BTB design relies on the profiled taken trace from
previous runs to skip the BTB lookup. A key issue in the
realization of our design is how to profile the taken trace
during program execution.

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

Basic Block vs. Taken Trace

q In contrast to the basic block, we define a taken tracetaken trace as
the instruction stream between the two consecutive taken
branches. It can reflect the dynamic behavior of a program.

B1

B2 B3

B4 B5

B7B6

q A taken trace, by definition, contains more than one basic
block.

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

Hardware Augmentations

1) The conventional BTB has to be augmented with an extra
field for each entry, called taken trace sizetaken trace size (TTS)(TTS) field,
which is used to record the size of the next taken trace.

Taken Trace Size Distribution

0%

10%

20%

30%

40%

50%

=<3 4~7 8~15 16~31 32~63 >=64

taken trace size

For the best tradeoff between the energy efficiency and hardware cost,
the TTS field width is fixed at 6-bit throughout this paper.

For the best tradeoff between the energy efficiency and hardware cost,
the TTS field width is fixed at 6-bit throughout this paper.

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

Hardware Augmentations

2) We need a counter, called remainder trace lengthremainder trace length (RTL)(RTL),
to indicate whether the currently fetched instruction locates
within a taken trace or not.

3) Another counter, called trace size accumulatortrace size accumulator (TSA)(TSA), is
needed to accumulate the taken trace size during program
execution.

4) A temporal register, called target entrytarget entry (TE)(TE), is needed to
remember the index of the previous hit/allocated BTB entry
during program execution.

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

Dynamic Taken Trace Profiling

send PC to
BTB RTL=0?

TSA++
RTL<=0

N
Hit?

Taken
branch?

Y

BTB[TE].TTS<=TSA
TSA<=0

N

Y

Y

TSA++

Taken
branch?

BTB[TE].TTS<=TSA
TSA<=0

N

Y

RTL<=BTB[index].TTS

send out the
predicted PC

TE=index

correct
prediction

(1) delete en try
(2) kill the fetched instr.
(3) restart to fetch another
instr.

m isprediction

(1) store branch & target
addresses into BTB[index]
(2) TE=index
(3) kil l the fetched instr .
and restart to fetch another
instr.

normal
instruction
execution

Taken
branch?

BTB[TE].TTS<=TSA
TSA<=0

N

Y

N

RTL--
TSA++

normal
instruction
execution

Hit in BTB?

Y

N

(1) RTL<=BTB[index].TTS
(2) TE=index

(1) s to re b ranch & t a rge t
addresses into BTB[index]
(2) TE=index & RTL=0
(3) k i l l the fe tched ins t r .
and restart to fetch another
instr.

Path 2

Path 1

Path 3

Path 4

Path 5

Path 6

Path 7

IF

ID

EX

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

 Possible
Paths

BTB
Lookup

Hit/Miss Prediction Actual
Branch

BTB Looup
in EX

Penalty
Cycles

Path 1 Y Hit taken not taken - 2
Path 2 Y Hit taken taken - 0
Path 3 Y Miss - not taken - 0
Path 4 Y Miss - taken - 2
Path 5 - - - not taken - 0
Path 6 - - - taken Y/Hit 3/4
Path 7 - - - taken Y/Miss 1/2

The seven possible paths in the lazy BTB scheme.The seven possible paths in the lazy BTB scheme.

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

4. Experimental Results

q We use SimpleScalar toolset to model a baseline processor
that closely resembles StrongARM processor.

Issue width 1 intr. per cycle
Intruction window 2-RUU, 2-LSQ

1 Int ALU, 1 Int Mult/Div
1 FP ALU, 1 FP Mult/Div

L1 instruction cache 16KB, 32-way, 32B blocks
L1 data cache 16KB, 32-way, 32B blocks
TLB (iTLB & dTLB) 128-entry, 4-way
Branch perdictor 2-Level 1K-entry
BTB 512-entry, 4-way
Return address stack 8-entry

L1 hit latency 1 cycle
Branch misprediction 2 cycles

8 cycles for the first chunk
2 cycles for the rest of a burst access

TLB miss penalty 30 cycles

Processor Configuration

Function units

Memory access latency

Penalty Parameters

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

Path Distributions

q The path distributions have a strong impact on the energy
efficiency of the lazy BTB.

 Benchmark path 1~4 path 5 path 6~7

adpcm_en 37.53% 59.41% 3.06%
adpcm_de 32.83% 64.63% 2.54%

epic_en 13.89% 85.68% 0.43%

epic_de 15.95% 83.39% 0.66%
g721_en 18.00% 81.11% 0.89%
g721_de 17.72% 81.42% 0.86%

gsm_en 15.00% 84.45% 0.56%
gsm_de 11.35% 88.50% 0.15%
jpeg_en 14.57% 84.92% 0.51%

jpeg_de 14.44% 85.07% 0.49%
mpeg2_en 30.79% 66.90% 2.31%
mpeg2_de 17.37% 81.81% 0.82%

ghostscirpt 13.17% 86.48% 0.35%
Average 19.43% 79.52% 1.05%

The large percentage of path 5 is preferred.The large percentage of path 5 is preferred.

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

Total Energy Consumption of BTB Lookups

q The metric used to evaluate the energy efficiency is the
simple total energy consumption of BTB lookups.

By filtering out most redundant BTB
lookups, the lazy BTB can reduce
the total energy consumption of
BTB lookups by 56%~88% for
MediaBench.

By filtering out most redundant BTB
lookups, the lazy BTB can reduce
the total energy consumption of
BTB lookups by 56%~88% for
MediaBench.

 BTBConv BTBLazy Reduction

adpcm_en 290.8 126.9 56.35%
adpcm_de 239.2 90.7 62.09%

epic_en 25.3 3.7 85.25%

epic_de 3.2 0.6 82.73%
g721_en 131.9 26.1 80.22%
g721_de 128.5 25.0 80.56%

gsm_en 896.6 144.4 83.90%
gsm_de 305.7 35.6 88.35%
jpeg_en 48.6 7.6 84.41%

jpeg_de 12.3 1.9 84.58%
mpeg2_en 544.4 192.8 64.59%
mpeg2_de 82.2 15.6 80.99%

ghostscirpt 557.1 77.3 86.13%

Average 251.2 57.6 77.09%

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

Performance Impact

q Compared to the conventional BTB, only the paths 6 and 7
result in the extra penalty cycles. The paths 6 and 7 are,
therefore, referred to as unfavorable path.

IPC for both the conventional and lazy BTBs

0.0

0.2

0.4

0.6

0.8

1.0

adp
cm

_en

adp
cm

_d
e

epi
c_e

n

epi
c_d

e

g72
1_e

n

g72
1_d

e

gsm
_en

gsm
_de

jpe
g_

en

jpe
g_d

e

mpeg
2_e

n

mpeg
2_d

e

gh
ost

sci
rpt

Aver
age

IPCConv
IPCLazy

IPCConv
IPCLazy

Our design results in roughly 1.7% IPC degradation on average.Our design results in roughly 1.7% IPC degradation on average.

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

5. Conclusions

q By using the developed dynamic taken trace profiling
technique, the lazy BTB can achieve the goal of one BTB one BTB
lookup per taken tracelookup per taken trace instead of one BTB lookup per
basic block.

q The results show that without noticeable performance
difference from the conventional BTB, our design can
reduce the total energy dissipated in BTB lookups up to
88%88% for the MediaBench applications.

CA_Lab @ CS.NCHUCA_Lab @ CS.NCHU

Thank You

Q & A

