Cache Size Selection for Performance, Energy and Reliability of Time-Constrained Systems

Y. Cai*, M. T. Schmitz⁺, A. Ejlali⁺,

B. M. Al-Hashimi⁺, S. M. Reddy^{*}

*Electrical and Comp. Engineering University of Iowa United States

> THE UNIVERSITY OF IOWA

[†]Electronics and Comp. Science University of Southampton United Kingdom

Overview

- Introduction
 - The affection of the cache size on performance, energy and reliability
- The models
 - transient fault model
 - performability model
 - cache energy model
- Simulation setup
- Experimental results
- Conclusions

Introduction

• Performance vs cache size:

Generally, with the same cache configuration (same block size, same ways, ...), larger the cache size, higher the processor performance. [1]

- Energy vs cache size:
 - Energy per cache access increases with the cache size [23].
 - The number of cache access is both application and cache size dependent.
- Reliability vs cache size: Complex, introduced with the fault model later

Introduction

- Previous work
 - only reducing the cache energy consumption. [3], [4], [5] ...
 - only enhancing the cache reliability. [9], [12] ...
 - considering both but not from the cache size perspective. [10]

• Our work

examining the jointly effect of the cache size on performance, energy and reliability.

• Study method

Simulation based on cycle-accurate simulator.

Models

- Fault model
- Cause: alpha particles [9]
- Result: bit-flip in the cache [19]
- Feature: transient, tolerated by re-execution [13]
- Uniformly distributed in space, Poisson distributed in time [9, 14]
- Reliability vs cache size

large cache size: more faults,

but more slack to re-execute

small cache size: less faults,

but less slack to re-execute

cache size: 256 lines 3 faults

slack for 2 re-executions

cache size: 128 lines 2 faults slack for 1 re-execution

cache size: 64 lines

1 faults Insufficient slack for re-execution

- Performability model [14]
 - Definition:

The probability of executing a task correctly within the time-constraint

- Feature:

measure the performance and reliability together

- Derivation:

number of possible re-executions:

$$k = \left\lfloor \frac{D}{N/f} \right\rfloor - 1 = \left\lfloor \frac{D \times f}{N} \right\rfloor - 1$$

Where D is the time constraint, f is the frequency and N is the clock cycles a task needs to be executed The probability of at least one error during the execution: [14] $\rho_e = 1 - e^{\frac{-\lambda_{error} \times N}{f}} = 1 - e^{\frac{-VF \times \lambda_{fault} \times N}{f}}$

Where

VF: vulnerability factor, the ratio between the number of errors and faults (faults do not necessarily cause errors) λ_{error} : error rate, product of *VF* and λ_{fault} λ_{fault} : fault rate, constant, measured at sea level [20]

Performability: [14]

$$P = 1 - \rho \frac{k+1}{e} = 1 - (1 - e^{\frac{\lambda_{error} \times N}{f}})^{\left\lfloor \frac{D \times f}{N} \right\rfloor}$$

Energy model

$$E = E_{read} \times N_{read} + E_{write} \times N_{write}$$

where E_{read} / E_{write} is the energy consumption per read/write access, N_{read} / N_{write} is the number of cache read/write accesses.

Simulation setup

Simulator: MPARM [24], cycle-accurate, ARM7 microprocessor

Cache configuration: separated data and instruction cache, maximum size of 256K bytes, minimum size of 32 bytes

Fault injection: inject faults into the cache during the execution and count the number of error results to obtain the vulnerability factor, which is used to compute the performability.

Simulation setup

• Benchmarks:

fixed point FFT (FPFFT) cyclic redundancy check (CRC) matrix multiplication (MM) matrix addition (MA) quick sort (QSORT)

FTFFT data cache: clock cycles

FPFFT data cache: energy

FPFFT data cache: vulnerability factor

FPFFT data cache: performability

Cache size	Number of 9's	Digits after 9
5	6	89742
6	6	74106
7	6	59974
8	12	52998
9	16	69592
10	26	81057
11	26	52011
12	26	39275
18	26	42730

For FPFFT benchmark, 2^{10} bytes is the optimal data cache size in terms of both energy and performability.

- Other benchmarks CRC: Pareto-optimal set { 2⁹, 2¹⁰ } MM: optimal size 2¹⁰ MA: optimal size 2⁹ QSORT: optimal size 2⁹
- Instruction cache FPFFT: Pareto-optimal set {2⁹, 2¹⁰} CRC: optimal size 2⁹ MM: optimal size 2⁸ MA: Pareto-optimal set {2⁷, 2⁸} QSORT: Pareto-optimal set {2⁸, 2⁹}

Conclusions

- Jointly impaction of cache size selection on performance, energy and reliability is studied through simulation
- Performability is used to combine the analysis of the performance and reliability
- Cache size should be carefully selected to find optimal energy/performability trade-off points

Thank you!

For further questions:

Yuan Cai (yuan-cai@uiowa.edu)