Reducing Dynamic Compilation
Overhead by Overlapping Compilation
and Execution

P. Unnikrishnan
IBM Toronto, Canada

M. Kandemir and F. Li

Pennsylvania State University, US

Outline

Introduction

Overlapping compilation and execution
Execution Model

Experiments

Conclusion

Introduction

Dynamic compilation
Optimizing applications while they are executing
Performance-oriented

Constant propagation through knowledge of variable values
at runtime

Anticipating frequent future executions
Energy-oriented

Application recompilation due to changing energy
constraints

Performance and energy overheads

Our goal: reduce performance overhead of dynamic
compilation

Introduction

Overlapping dynamic compilation and
application execution (

)

Code fragment (module)

Loop nests, subroutines or several logically-
related subroutines

Strategy
Predict the next code fragment to be executed

Pre-compile that code fragment before it is
actually needed

Overlapping compilation and
execution

o
IE1
Te:
IE2
_ IC1
IE1

[e

[E1]co
[2] c

IE1
~

> Savings

[
151102
]::Ezlc1
IE1

} Savings

Implementation

Dynamic compilation infrastructure

Dyninst software: a post-compiler program
manipulation tool

Instrument and modify application programs during
execution

Through Dyninst API, a program can create new code
pieces and insert them to another program while the
latter is executing

Target environment
An energy-sensitive SoC platform with multiple cores

Dynamic compilation invoked due to changes in energy
constraints

Abstraction used in Dyninst API

T ——
Mutator Application

API

- Snippets

Runtime Library

Dyninst| Machine
Code |Dependent
Code

Execution Model

Runtime History Table
Orig Code Energy.) E-Script
[T) CO”St"a'”\]/ (i) / iy A
“" %

E-Ctrl:ﬁﬁ‘r (v)

4
L4
&

> lllll““““ E-Optimizer

Compiled Code Repository

History-based Next Module Prediction

Regularity within the function/subroutine/nest
traces of applications

Array-based application: loop nests

Others: function/subroutine
Reasonable prediction accuracy
History table

Once an energy-sensitive region reached, it is
logged into history table

E-CompThr consults history table before
predicting the next energy sensitive region

Next Module Prediction Accuracy

Benchmark | Prediction
Benchmark | Source/Type | Size/lnput File Accuracy
btrix Spec9s 7121KB btrix 99.95%
tomcatv Spec9s 836KB tomcatv 88.38%
vpenta Spec9s 77T0KB vpenta 99.96%
hier Motion Est. 310KB hier 100.00%
full_search Motion Est. 310KB full_search 100.00%
epic MediaBench test_image.pgm epic 91.02%
rasta MediaBench exdcl.wav rasta 72.13%
[81.mcf Spec2000 inp.in [81.mct 87.52%

Time Contribution of Dynamic

Compilation
Worst/Best case time contribution of dynamic
compilation
Benchmark Compilation Time | Compilation Time | Execution Time
(Worst Case) (Best Case) (msec)
btrix [7651.69 [53.1%] 1810.51 [10.49%A1 / 15599.96
tomeatv 22225.82 [80.3%) [854\ 25,4 | —5450.17
vpenta 20060.68 [36.5%) s ~_~98
hier 3515.73 [36.7%)] (5303
full_search 2468.43 [70.6%] | ~~__ average _N1029.84
epic 90476.59 [82.0%)] 7 19878.16
rasta 85515.07 [86.4% mﬂ W«.] 13436.02
[81.mcf 5283755.26 [85.8% 1490.7 [0.2%] 873999.61

Experimental Results

Various compilation probabilities

100%: every module has to be recompiled before it can
be executed

50%(25%): the recompilation probabilities only 50%
(25%) for each module

Most applications have compilation probabilities
ranging from 25% to 80%

Sun multi-processor machine running Solaris

Processor 1: application process
Processor 2: E-Optimizer (E-CtrIThr and E-CompThr)

Reductions in Overall Execution Time

Benchmark 2 Processors 3 Processors
Compl% Excn% | Total% | Compl% Exec% | Total%
btrix 23.11 4.16 10.26 20.07 -0.24 10.50
tomcatv 30.80 -90.13 6.63 14.02 -5.32 10.15
vpenta 40.25 -2.38 13.17 38.69 -1.75 13.00
hier 63.75 -0.77 22.92 61.76 -0.68 22.25
full_search 27.06 -3.96 17.94 22.98 2228 15.55
epic 13.72 -39.36 4.01 28.66 -7.35 22.07
rasta 28.32 -162.50 2.00 36.71 -11.85 30.01
[81.mcf 29.49 -129.02 5.93 38.25 -7.04 31.51

Benchmark 2 Processors 3 Processors
Compl% | Excn% | Total% | Compl% | Excn% | Total%
btrix 22.28 -0.67 8.34 15.99 0.38 5.65
tomcatv 8.48 26.21 2.25 0.92 -3.77 5.07
[81.mef 9.05 -28.50 -0.34 10.70 -9.65 4.84
vpenta 37.32 -0.47 5.89 63.42 -0.27 6.31
hier 37.27 0.43 0.22 60.86 0.32 0.27
full_search -40.03 -4.85 -17.72 -9.55 -0.85 -4 .40
epic 14.95 -11.19 2.87 8.87 -4.79 2.16
rasta .56 -49.92 -17.68 6.01 -6.32 [.19
[8]1.mef -0.12 -10.11 -4.48 -8.59 [.08 -4 .84

Impact of Compiling Critical Modules

Critical module: the one that contributes to
the overall execution time significantly

Nests Compile(ms) | Total(ms)
None 0 34375.86
Nest | 2874.97 55963.48
JNestl#Nestll 0l 4824.32 | 58135.06
Nest [+ Nest I + Nest [V 7319.83 46720.90
S— “Nest I+ Nest Il + Nest IV +Next VIII | 969283 | 59210.55
All Nests 20060.67 54989.12

Impact of Compiling Critical Modules

Nests Compile (msec) Total (msec)
Nest | 262.98 [90.85%] 52614.01 [5.99%]
Nest I + Nest 11 472.14 [90.21%] 53585.28 [7.83%]
Nest [+ Nest 11

+ Nest IV 2652.98 [63.76%] 39124.29 [10.58%]
Nest [+ Nest 11

+ Ne + 0 0

Profile the application to determine the critical
modules

Pre-compile these modules using the proposed
approach

Impact of Increasing the Number of
Processors

~

‘ Processor 3 ‘ ‘ Processor 4 ‘

‘ Processor 1 ‘ ‘ Processor 2

NS D)W N D
| | (e | N | A (O |

N [I o A o O o Iy M« O«
s O EOONEOMN
QO
2 e —
:]
3
e Blsp,
al
G
o m Ids
—
m M 4o

. — | — ege~.
m =y iy
M m _1] o1y
2 ~ _ _ By
,.Lluv Q F— gl

g
50] e
n a emOF__Oh
oy n
8 >
LA HWUAEQ
O w o 10 o :_... m.... Tyl o

Juswenoidul| abejusniad

Increasing the Number of Processors

for Application Execution

o

ling

15

Q n L~ LIy
— I

Juswaaoidw| abejuasiad

-10

Conclusion

Hide the time spent in dynamic compilation by
overlapping it with application execution

Implement a dynamic compilation/linking
infrastructure that compiles/links program
modules based on external energy
constraints

Predicting and pre-compiling
Encouraging experimental results

Thank you!

