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Introduction
 Dynamic compilation

 Optimizing applications while they are executing
 Performance-oriented

 Constant propagation through knowledge of variable values 
at runtime

 Anticipating frequent future executions
 Energy-oriented

 Application recompilation due to changing energy 
constraints

 Performance and energy overheads
 Our goal: reduce performance overhead of dynamic 

compilation



  

Introduction
 Overlapping dynamic compilation and 

application execution (compilation 
parallelization)

 Code fragment (module)
 Loop nests, subroutines or several logically-

related subroutines
 Strategy

 Predict the next code fragment to be executed
 Pre-compile that code fragment before it is 

actually needed



  

Overlapping compilation and 
execution
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Implementation
 Dynamic compilation infrastructure

 Dyninst software: a post-compiler program 
manipulation tool

 Instrument and modify application programs during 
execution

 Through Dyninst API, a program can create new code 
pieces and insert them to another program while the 
latter is executing

 Target environment
 An energy-sensitive SoC platform with multiple cores
 Dynamic compilation invoked due to changes in energy 

constraints



  

Abstraction used in Dyninst API
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Execution Model
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History-based Next Module Prediction

 Regularity within the function/subroutine/nest 
traces of applications
 Array-based application: loop nests
 Others: function/subroutine

 Reasonable prediction accuracy
 History table

 Once an energy-sensitive region reached, it is 
logged into history table

 E-CompThr consults history table before 
predicting the next energy sensitive region



  

Next Module Prediction Accuracy



  

Time Contribution of Dynamic 
Compilation
 Worst/Best case time contribution of dynamic 

compilation

Best Case: 13% on 
average



  

Experimental Results
 Various compilation probabilities

 100%: every module has to be recompiled before it can 
be executed

 50%(25%): the recompilation probabilities only 50% 
(25%) for each module

 Most applications have compilation probabilities 
ranging from 25% to 80%

 Sun multi-processor machine running Solaris
 Processor 1: application process
 Processor 2: E-Optimizer (E-CtrlThr and E-CompThr)



  

Reductions in Overall Execution Time



  

2 processors: 
Compilation probability 100%(50%): 10.35%(4.07%) reduction
Compilation probability 25%:  2.19% increase

3 processors: 
Processor 2 (E-CtrlThr); Processor 3 (E-CompThr)
Compilation probability 100%(50%): 19.38%(7.05%) reduction
Compilation probability 25%:  0.81% increase



  

Impact of Compiling Critical Modules

 Critical module: the one that contributes to 
the overall execution time significantly

Compiling only critical modules when interleaving execution
And compilation: 14.07% in total time



  

Impact of Compiling Critical Modules

Overlapping compilation and computation: additional 13.98%
Total reduction: 28.05%

 Profile the application to determine the critical 
modules

 Pre-compile these modules using the proposed 
approach



  

Impact of Increasing the Number of 
Processors
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Increasing the Number of Processors 
for Dynamic Compilation



  

Increasing the Number of Processors 
for Application Execution



  

Conclusion

 Hide the time spent in dynamic compilation by 
overlapping it with application execution

 Implement a dynamic compilation/linking 
infrastructure that compiles/links program 
modules based on external energy 
constraints
 Predicting and pre-compiling

 Encouraging experimental results



  

Thank you!


