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Introduction

Dynamic compilation
Optimizing applications while they are executing
Performance-oriented

Constant propagation through knowledge of variable values
at runtime

Anticipating frequent future executions
Energy-oriented

Application recompilation due to changing energy
constraints

Performance and energy overheads

Our goal: reduce performance overhead of dynamic
compilation



Introduction

Overlapping dynamic compilation and
application execution (

)

Code fragment (module)

Loop nests, subroutines or several logically-
related subroutines

Strategy
Predict the next code fragment to be executed

Pre-compile that code fragment before it is
actually needed



Overlapping compilation and
execution
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Implementation

Dynamic compilation infrastructure

Dyninst software: a post-compiler program
manipulation tool

Instrument and modify application programs during
execution

Through Dyninst API, a program can create new code
pieces and insert them to another program while the
latter is executing

Target environment
An energy-sensitive SoC platform with multiple cores

Dynamic compilation invoked due to changes in energy
constraints



Abstraction used in Dyninst API
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Execution Model

Runtime History Table
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History-based Next Module Prediction

Regularity within the function/subroutine/nest
traces of applications

Array-based application: loop nests

Others: function/subroutine
Reasonable prediction accuracy
History table

Once an energy-sensitive region reached, it is
logged into history table

E-CompThr consults history table before
predicting the next energy sensitive region



Next Module Prediction Accuracy

Benchmark | Prediction
Benchmark | Source/Type | Size/lnput File Accuracy
btrix Spec9s 7121KB btrix 99.95%
tomcatv Spec9s 836KB tomcatv 88.38%
vpenta Spec9s 77T0KB vpenta 99.96%
hier Motion Est. 310KB hier 100.00%
full_search Motion Est. 310KB full_search 100.00%
epic MediaBench test_image.pgm epic 91.02%
rasta MediaBench exdcl.wav rasta 72.13%
[81.mcf Spec2000 inp.in [81.mct 87.52%




Time Contribution of Dynamic

Compilation
Worst/Best case time contribution of dynamic
compilation
Benchmark Compilation Time | Compilation Time | Execution Time
(Worst Case) (Best Case) (msec)
btrix [7651.69 [53.1%] 1810.51 [10.49%A1 / 15599.96
tomeatv 22225.82 [80.3%) [854\ 25,4 | —5450.17
vpenta 20060.68 [36.5%) s ~_~98
hier 3515.73 [36.7%)] (5303
full_search 2468.43 [70.6%] | ~~__ average _N1029.84
epic 90476.59 [82.0%)] 7 19878.16
rasta 85515.07 [86.4% mﬂ W«.] 13436.02
[81.mcf 5283755.26 [85.8% 1490.7 [0.2%] 873999.61




Experimental Results

Various compilation probabilities

100%: every module has to be recompiled before it can
be executed

50%(25%): the recompilation probabilities only 50%
(25%) for each module

Most applications have compilation probabilities
ranging from 25% to 80%

Sun multi-processor machine running Solaris

Processor 1: application process
Processor 2: E-Optimizer (E-CtrIThr and E-CompThr)



Reductions in Overall Execution Time

Benchmark 2 Processors 3 Processors
Compl% Excn% | Total% | Compl% Exec% | Total%
btrix 23.11 4.16 10.26 20.07 -0.24 10.50
tomcatv 30.80 -90.13 6.63 14.02 -5.32 10.15
vpenta 40.25 -2.38 13.17 38.69 -1.75 13.00
hier 63.75 -0.77 22.92 61.76 -0.68 22.25
full_search 27.06 -3.96 17.94 22.98 2228 15.55
epic 13.72 -39.36 4.01 28.66 -7.35 22.07
rasta 28.32 -162.50 2.00 36.71 -11.85 30.01
[81.mcf 29.49 -129.02 5.93 38.25 -7.04 31.51




Benchmark 2 Processors 3 Processors
Compl% | Excn% | Total% | Compl% | Excn% | Total%
btrix 22.28 -0.67 8.34 15.99 0.38 5.65
tomcatv 8.48 26.21 2.25 0.92 -3.77 5.07
[81.mef 9.05 -28.50 -0.34 10.70 -9.65 4.84
vpenta 37.32 -0.47 5.89 63.42 -0.27 6.31
hier 37.27 0.43 0.22 60.86 0.32 0.27
full_search -40.03 -4.85 -17.72 -9.55 -0.85 -4 .40
epic 14.95 -11.19 2.87 8.87 -4.79 2.16
rasta .56 -49.92 -17.68 6.01 -6.32 [.19
[8]1.mef -0.12 -10.11 -4.48 -8.59 [.08 -4 .84




Impact of Compiling Critical Modules

Critical module: the one that contributes to
the overall execution time significantly

Nests Compile(ms) | Total(ms)
None 0 34375.86
Nest | 2874.97 55963.48
JNestl#Nestll 0l 4824.32 | 58135.06
Nest [ + Nest I + Nest [V 7319.83 46720.90
S— “Nest I+ Nest Il + Nest IV +Next VIII | 969283 | 59210.55
All Nests 20060.67 54989.12




Impact of Compiling Critical Modules

Nests Compile (msec) Total (msec)
Nest | 262.98 [90.85%] 52614.01 [5.99%]
Nest I + Nest 11 472.14 [90.21%] 53585.28 [7.83%]
Nest [ + Nest 11

+ Nest IV 2652.98 [63.76%] 39124.29 [10.58%]
Nest [ + Nest 11

+ Ne + 0 0

Profile the application to determine the critical
modules

Pre-compile these modules using the proposed
approach



Impact of Increasing the Number of
Processors

~

‘ Processor 3 ‘ ‘ Processor 4 ‘

‘ Processor 1 ‘ ‘ Processor 2
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Increasing the Number of Processors

for Application Execution
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Conclusion

Hide the time spent in dynamic compilation by
overlapping it with application execution

Implement a dynamic compilation/linking
infrastructure that compiles/links program
modules based on external energy
constraints

Predicting and pre-compiling
Encouraging experimental results



Thank you!



