

Reducing Dynamic Compilation
Overhead by Overlapping Compilation
and Execution

P. Unnikrishnan
IBM Toronto, Canada

M. Kandemir and F. Li
Pennsylvania State University, US

Outline

 Introduction
 Overlapping compilation and execution
 Execution Model
 Experiments
 Conclusion

Introduction
 Dynamic compilation

 Optimizing applications while they are executing
 Performance-oriented

 Constant propagation through knowledge of variable values
at runtime

 Anticipating frequent future executions
 Energy-oriented

 Application recompilation due to changing energy
constraints

 Performance and energy overheads
 Our goal: reduce performance overhead of dynamic

compilation

Introduction
 Overlapping dynamic compilation and

application execution (compilation
parallelization)

 Code fragment (module)
 Loop nests, subroutines or several logically-

related subroutines
 Strategy

 Predict the next code fragment to be executed
 Pre-compile that code fragment before it is

actually needed

Overlapping compilation and
execution

C1

E1

C2

C1

E2

E1

C1

E1

E2

E1

C2

C1

Savings

C1

E1

E2

E1

C2

C1

Savings

Implementation
 Dynamic compilation infrastructure

 Dyninst software: a post-compiler program
manipulation tool

 Instrument and modify application programs during
execution

 Through Dyninst API, a program can create new code
pieces and insert them to another program while the
latter is executing

 Target environment
 An energy-sensitive SoC platform with multiple cores
 Dynamic compilation invoked due to changes in energy

constraints

Abstraction used in Dyninst API

Mutator Application

API

Dyninst
Code

Machine
Dependent

Code

Ptrace/procfs

Mutator Application

Snippets

Runtime Library

Execution Model

(………)

(………)

(………)

History Table

E-Script

E-CtrlThr

(………)

(………)

(………)

Orig Code

Modified Code

Runtime
Energy
Constraints

E-CompThr

(i)

(i)
(ii) (iii)

E-Compiler

(iv)

(v)
E-Optimizer

(vi)
(vii)

(viii)

Compiled Code Repository

History-based Next Module Prediction

 Regularity within the function/subroutine/nest
traces of applications
 Array-based application: loop nests
 Others: function/subroutine

 Reasonable prediction accuracy
 History table

 Once an energy-sensitive region reached, it is
logged into history table

 E-CompThr consults history table before
predicting the next energy sensitive region

Next Module Prediction Accuracy

Time Contribution of Dynamic
Compilation
 Worst/Best case time contribution of dynamic

compilation

Best Case: 13% on
average

Experimental Results
 Various compilation probabilities

 100%: every module has to be recompiled before it can
be executed

 50%(25%): the recompilation probabilities only 50%
(25%) for each module

 Most applications have compilation probabilities
ranging from 25% to 80%

 Sun multi-processor machine running Solaris
 Processor 1: application process
 Processor 2: E-Optimizer (E-CtrlThr and E-CompThr)

Reductions in Overall Execution Time

2 processors:
Compilation probability 100%(50%): 10.35%(4.07%) reduction
Compilation probability 25%: 2.19% increase

3 processors:
Processor 2 (E-CtrlThr); Processor 3 (E-CompThr)
Compilation probability 100%(50%): 19.38%(7.05%) reduction
Compilation probability 25%: 0.81% increase

Impact of Compiling Critical Modules

 Critical module: the one that contributes to
the overall execution time significantly

Compiling only critical modules when interleaving execution
And compilation: 14.07% in total time

Impact of Compiling Critical Modules

Overlapping compilation and computation: additional 13.98%
Total reduction: 28.05%

 Profile the application to determine the critical
modules

 Pre-compile these modules using the proposed
approach

Impact of Increasing the Number of
Processors

C1

E1

C2

C1

E2

E1

Processor 1 Processor 2 Processor 3 Processor 4

Increasing the Number of Processors
for Dynamic Compilation

Increasing the Number of Processors
for Application Execution

Conclusion

 Hide the time spent in dynamic compilation by
overlapping it with application execution

 Implement a dynamic compilation/linking
infrastructure that compiles/links program
modules based on external energy
constraints
 Predicting and pre-compiling

 Encouraging experimental results

Thank you!

