

Reducing Dynamic Compilation
Overhead by Overlapping Compilation
and Execution

P. Unnikrishnan
IBM Toronto, Canada

M. Kandemir and F. Li
Pennsylvania State University, US

Outline

 Introduction
 Overlapping compilation and execution
 Execution Model
 Experiments
 Conclusion

Introduction
 Dynamic compilation

 Optimizing applications while they are executing
 Performance-oriented

 Constant propagation through knowledge of variable values
at runtime

 Anticipating frequent future executions
 Energy-oriented

 Application recompilation due to changing energy
constraints

 Performance and energy overheads
 Our goal: reduce performance overhead of dynamic

compilation

Introduction
 Overlapping dynamic compilation and

application execution (compilation
parallelization)

 Code fragment (module)
 Loop nests, subroutines or several logically-

related subroutines
 Strategy

 Predict the next code fragment to be executed
 Pre-compile that code fragment before it is

actually needed

Overlapping compilation and
execution

C1

E1

C2

C1

E2

E1

C1

E1

E2

E1

C2

C1

Savings

C1

E1

E2

E1

C2

C1

Savings

Implementation
 Dynamic compilation infrastructure

 Dyninst software: a post-compiler program
manipulation tool

 Instrument and modify application programs during
execution

 Through Dyninst API, a program can create new code
pieces and insert them to another program while the
latter is executing

 Target environment
 An energy-sensitive SoC platform with multiple cores
 Dynamic compilation invoked due to changes in energy

constraints

Abstraction used in Dyninst API

Mutator Application

API

Dyninst
Code

Machine
Dependent

Code

Ptrace/procfs

Mutator Application

Snippets

Runtime Library

Execution Model

(………)

(………)

(………)

History Table

E-Script

E-CtrlThr

(………)

(………)

(………)

Orig Code

Modified Code

Runtime
Energy
Constraints

E-CompThr

(i)

(i)
(ii) (iii)

E-Compiler

(iv)

(v)
E-Optimizer

(vi)
(vii)

(viii)

Compiled Code Repository

History-based Next Module Prediction

 Regularity within the function/subroutine/nest
traces of applications
 Array-based application: loop nests
 Others: function/subroutine

 Reasonable prediction accuracy
 History table

 Once an energy-sensitive region reached, it is
logged into history table

 E-CompThr consults history table before
predicting the next energy sensitive region

Next Module Prediction Accuracy

Time Contribution of Dynamic
Compilation
 Worst/Best case time contribution of dynamic

compilation

Best Case: 13% on
average

Experimental Results
 Various compilation probabilities

 100%: every module has to be recompiled before it can
be executed

 50%(25%): the recompilation probabilities only 50%
(25%) for each module

 Most applications have compilation probabilities
ranging from 25% to 80%

 Sun multi-processor machine running Solaris
 Processor 1: application process
 Processor 2: E-Optimizer (E-CtrlThr and E-CompThr)

Reductions in Overall Execution Time

2 processors:
Compilation probability 100%(50%): 10.35%(4.07%) reduction
Compilation probability 25%: 2.19% increase

3 processors:
Processor 2 (E-CtrlThr); Processor 3 (E-CompThr)
Compilation probability 100%(50%): 19.38%(7.05%) reduction
Compilation probability 25%: 0.81% increase

Impact of Compiling Critical Modules

 Critical module: the one that contributes to
the overall execution time significantly

Compiling only critical modules when interleaving execution
And compilation: 14.07% in total time

Impact of Compiling Critical Modules

Overlapping compilation and computation: additional 13.98%
Total reduction: 28.05%

 Profile the application to determine the critical
modules

 Pre-compile these modules using the proposed
approach

Impact of Increasing the Number of
Processors

C1

E1

C2

C1

E2

E1

Processor 1 Processor 2 Processor 3 Processor 4

Increasing the Number of Processors
for Dynamic Compilation

Increasing the Number of Processors
for Application Execution

Conclusion

 Hide the time spent in dynamic compilation by
overlapping it with application execution

 Implement a dynamic compilation/linking
infrastructure that compiles/links program
modules based on external energy
constraints
 Predicting and pre-compiling

 Encouraging experimental results

Thank you!

