Functional modeling style for efficient SW code generation of video codec applications

Sang-Il Han¹⁾²⁾ Soo-Ik Chae¹⁾ Ahmed. A. Jerraya²⁾ SD Group¹⁾ SLS Group²⁾ Seoul National Univ., Korea TIMA laboratory, France

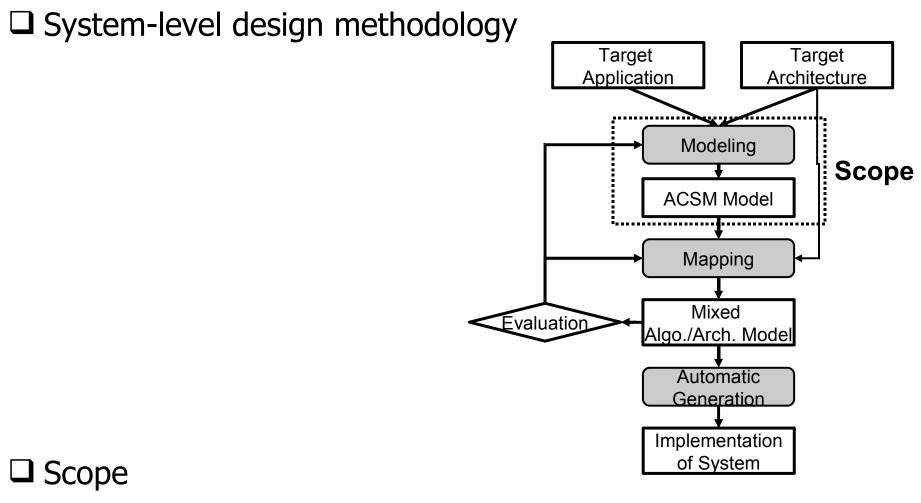
Summary

□ Challenges in video codec system design

- ✓ Complex High-performance within short design time
- $\checkmark\,$ Classical RTL design methodology is too slow

Requirements in video codec system design

- ✓ System level design methodology with functional model
- ✓ Explicit **parallelism** and **conditional** in functional model


Existing modeling styles

- ✓ Data-driven model lacks explicit **conditional** (ex: SDF lacks conditionals)
- ✓ Event-driven model lacks explicit **parallelism** (ex: SM lacks distributed imp.)

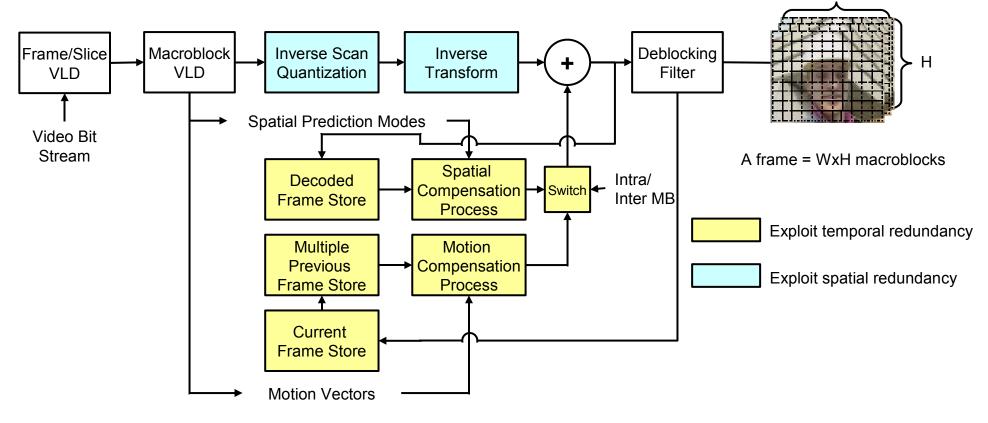
Proposed modeling style

- ✓ Abstract clock synchronous model (ACSM): An extension of CSM for RTL
- ✓ Both **parallelism** and **conditional** with an abstract global clock

The scope of this work

✓ Modeling style to generate efficient SW code.

02/01/06


Contents

□ Introduction

- Proposed modeling style
- Comparison with existing modeling styles
- Experiment
- Conclusion and Perspective

Target application

□ Macroblock-based video codecs ✓ MPEG-2, H.263, MPEG-4, H.264, and WMV9

02/01/06

Block diagram of an H.264 decoder

W

Challenges and Requirements (1)

1) Computation Complexity

 $\checkmark~$ Ex: \approx 10 Gops/sec for 4VGA decoding

Explicit parallelism

✓ Parallel and pipelined computation execution

2) Communication Complexity

 $\checkmark\,$ Ex: \approx 500 MB/sec external memory bandwidth for 4VGA decoding

Explicit and predictable communication

- Parallel computation and communication execution
- ✓ Efficient communication scheme e.g. burst transfer

02/01/06

Challenges and Requirements (2)

3) Specification Complexity

✓ Ex: Curr. MB has dependency with prev., upper., upper prev. MB

Higher level synchronization

✓ Function- and thread-level synchronization

4) Control Complexity

✓ Ex: 4x4 intra, 16x16 intra, 4x4 inter, 8x8 inter, ... MB prediction modes

Explicit data-dependent comp./comm.

✓ Sophisticated control operations e.g. memory management

Contribution

Propose modeling style for video codecs

- ✓ Abstract clock synchronous model (ACSM)
- \checkmark An extension of clocked synchronous model for RTL
- ✓ Coarser clock: Abstract clock

> 1)Partially ordered dependency at function level

Computation Complexity,

> 2)Explicit comm. channel with fixed buffer size

Communication Complexity

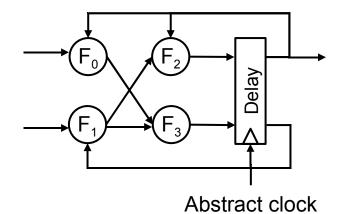
> 3)Coarser clock granularity than physical clock

Specification Complexity

4)Explicit conditionals through global abstract clock

Control Complexity

Contents


Proposed modeling style

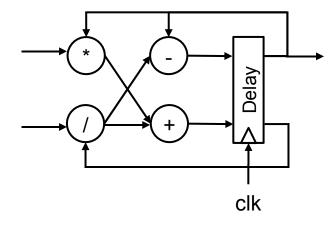
- Comparison with existing modeling styles
- Experiment
- Conclusion and Perspective

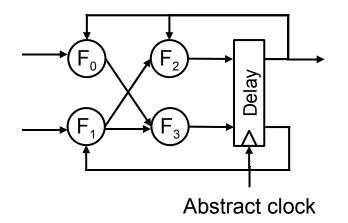
Proposed modeling style

□ Abstract clock synchronous model

- ✓ Structure
 - Network of state-less functions
 - Memory elements
 - Abstract clock

✓ Hypothesis : Lock step execution model

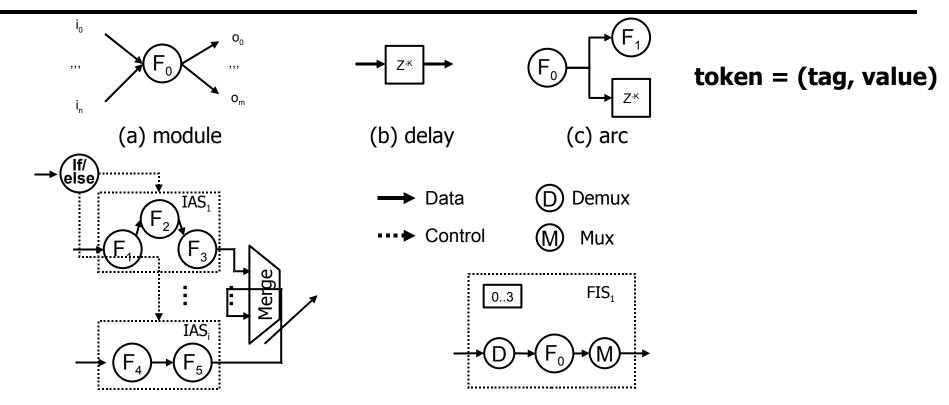

 In every abstract clock cycle, new values propagate in the network


RTL model vs ACSM

Difference: Granularity of clock and components

ACSM

RTL model



- Network of combinational gates
- □ Memory elements (delay)
- □ No loops in combinational logics
- □ Synch: Lock step model
- □ Synch. interval: clock

02/01/06

- □ Network of state-less functions
- □ Memory elements (delay)
- No loops in network of functions
- □ Synch: Lock step model
- □ Synch. interval: abstract clock

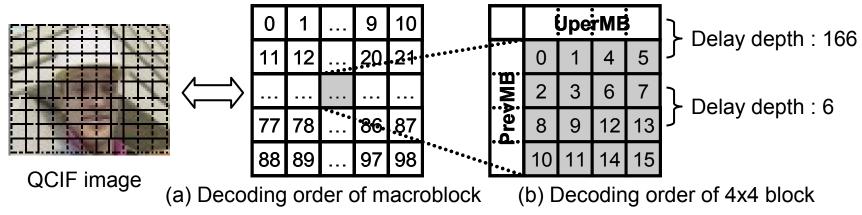
Basic components

(d) If-action subsystem (IAS) (e) For-iterator subsystem (FIS)

□ **Rule on execution**: If one token on **all** input ports, fired.

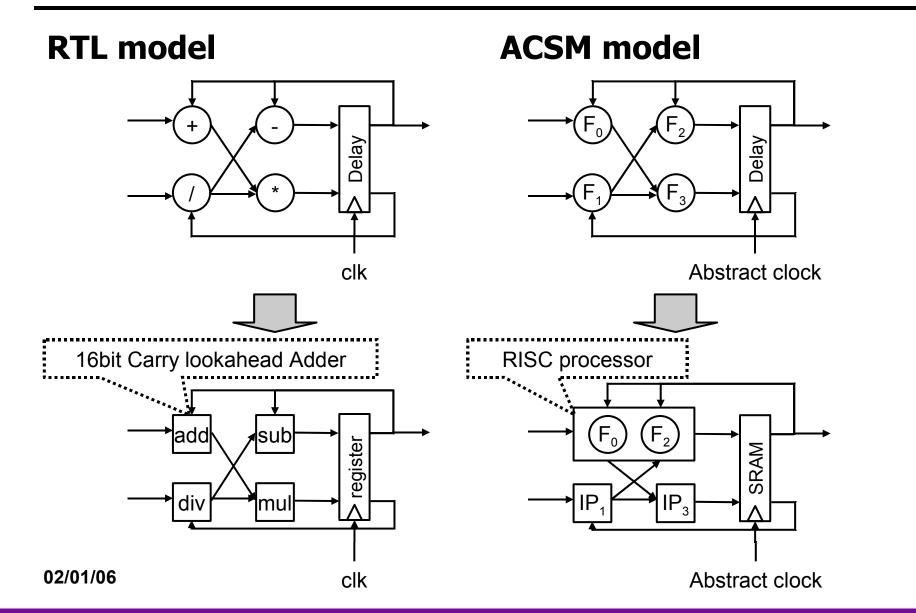
✓ Except Merge block

□ **Rule on absent token**: absent token with global abstract clock.

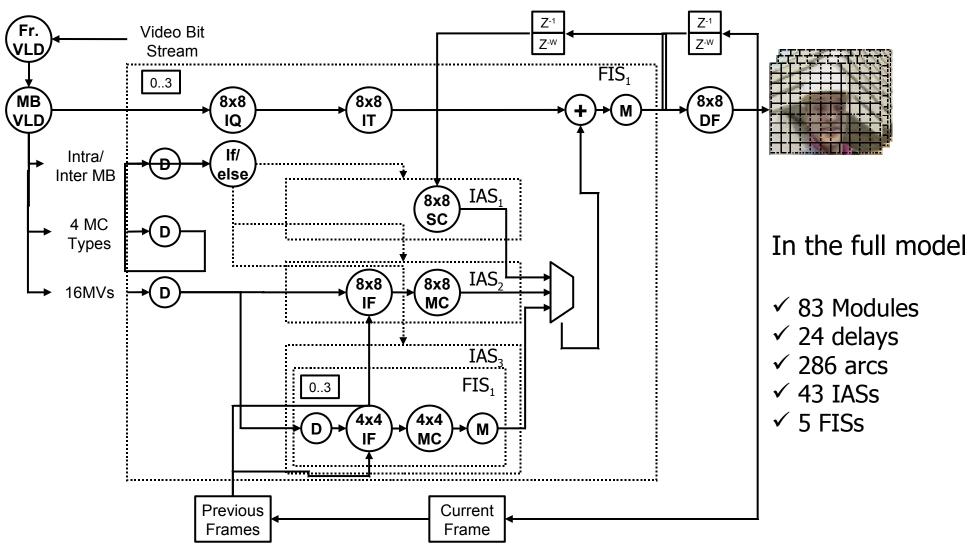

absent token = (tag, empty value)

02/01/06

Abstract clock for video codecs


□ Hierarchical iterations in video decoder and encoder

- ✓ Frame level index: too coarse to express parallelism.
- ✓ Sub-macroblock level index: irregular delay depth
- Macroblock level index: proper granularity and regular delay depth


Abstract clock for video codecs: Macroblock index

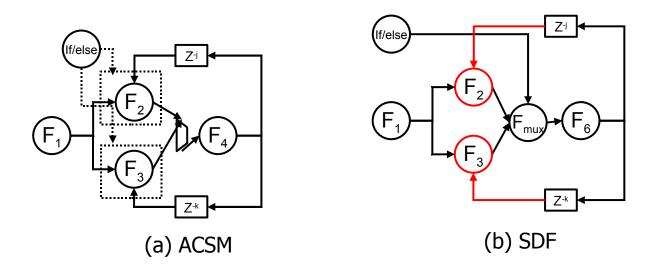
Implementations of RTL model and ACSM

14

A simplified ACSM of H.264 decoder

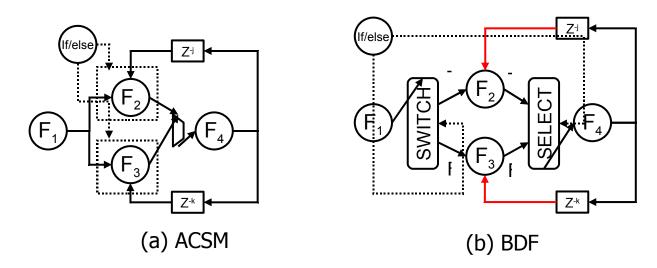
02/01/06

Contents


Introduction

□ Proposed modeling style

Comparison with existing modeling styles


- Experiment
- □ Conclusion and Perspective

Synchronous Dataflow (SDF)

- □ **SDF:** Concurrent actors communicate with one-way FIFO channels
- **Rule on execution**: If sufficient non-zero tokens on **all** input ports, fired
- **Rule on absent token**: No concept of absent token.
- Difficulty: No explicit conditionals (!req. 4)
 - ✓ Redundant computation : One of F_2 and F_3
 - ✓ Redundant commutation : One of $(Z^{-j} \Rightarrow F_2)$ and $(Z^{-k} \Rightarrow F_3)$

Boolean Dataflow (BDF)

- □ **BDF:** Concurrent actors communicate with one-way FIFO channels
- □ **Rule on execution**: If sufficient non-zero tokens on **all** input ports, fired
 - ✓ Except SWITCH and SELECT blocks
- □ **Rule on absent token**: Absent token without global clock.
- Difficulty: Buffer overflow problem. (!req. 4)
 - ✓ Accumulate tokens between $(Z^{-j} \Rightarrow F_2)$ and $(Z^{-k} \Rightarrow F_3)$
 - ✓ To solve this problem, a lot of additional switches: 138 switches/83 modules in case of H.264 decoder

Other modeling styles

□ Khan Process Network (KPN)

- ✓ Difficulty1: Task-level coarse granularity (!req 1)
- ✓ Difficulty2: Comp./comm./control mixed (!req 2, !req4)

□ Synchronous Dataflow with embedded control (SDF+eCtrl)

- Difficulty1: Coarser granularity. (!req. 1)
- ✓ Difficulty2: Still Redundant communication (!req. 4)

□ Synchronous model (SM)

- Rule on execution: If one present token on one or more input ports, fired
- Rule on absent token: Absent tokens with virtual clock.
- ✓ Difficulty: distributed implementation (!req 1)

Summary of Modeling styles

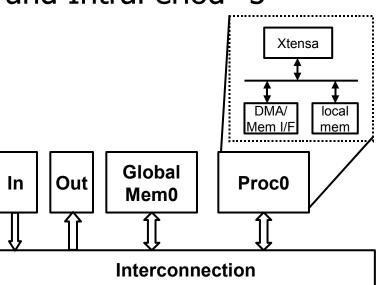
Models Requirements	KPN	SDF	SDF +eCtrl	BDF	SM	RTL	ACSM
Explicit fine-grain parallelism	Δ	\checkmark	Δ	\checkmark	×	\checkmark	\checkmark
Explicit communication	Δ	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Higher level synchronization	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark
Explicit data- dependent op.	X	X	Δ	Δ	\checkmark	\checkmark	\checkmark
Model Type	Data-driven				Event-driven	Clock-driven	
Clock	No global clock				Virtual clks	Physic clk	Abstract clk
Analysis	No absent token (or without clock) Explicit conditionals				Unrestricted absent token Distributed	Restricted absent token with global clock Execution ≈ Data-driven	
02/01/06					system	Absent token ≈Event-driven	

Contents

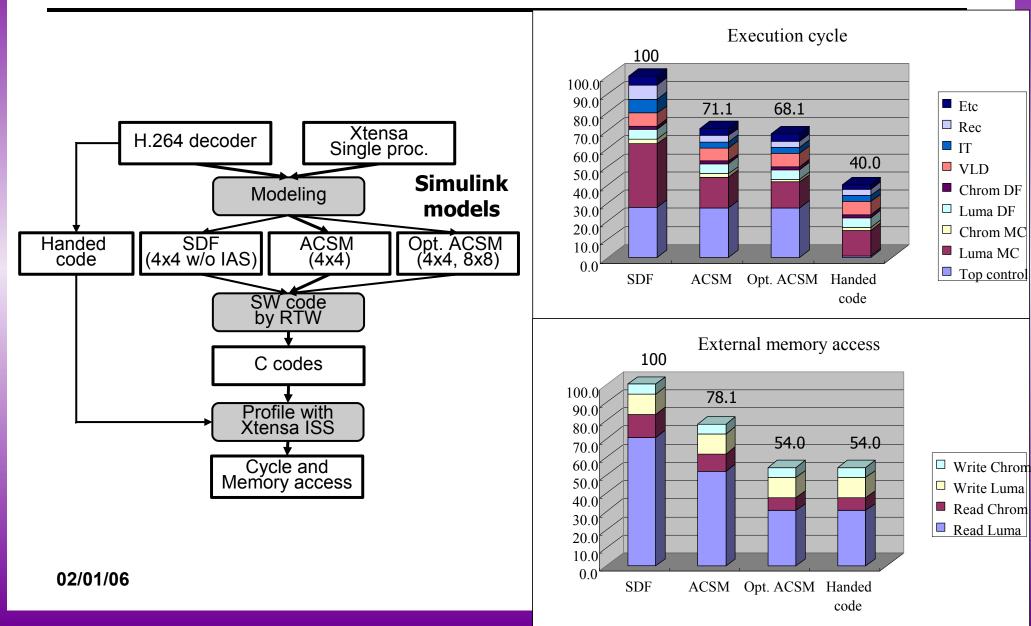
- □ Proposed modeling style
- Comparison with existing modeling styles

Experiment

□ Conclusion and Perspective


Experiment environment

□ Target application


- ✓ H.264 baseline decoder
- ✓ Foreman QCIF format with QP=28 and IntraPeriod=5
- \checkmark All search modes are supported.

□ Target architecture

- ✓ Tensilica Xtensa single processor
- ✓ DMA + memory I/F
- ✓ Mapping
 - Frames are stored in global memory.
 - Image fetch process is executed on DMA.
 - All other processes are executed on Xtensa.

Experiment

Experiment result: Comparison

□ Compared to SDF

- ✓ Reduce 32% execution time
 - Due to Redundant computation of SDF
- ✓ Reduce 46% external memory access
 - Due to redundant communication of SDF

Compared to SDF+eCtrl

- ✓ Similar execution time, but SDF+eCtrl limits design space.
- ✓ Reduce 46% external memory access
 - Due to redundant communication of SDF+eCtrl

Compared to BDF

- ✓ Buffer overflow,
- ✓ or a lot of switches required (138 switches/83 modules)

Contents

- Contribution
- □ Basics of target application and architecture
- □ Proposed modeling style
- Comparison with existing modeling styles
- Experiment
- **Conclusion and Perspective**

Conclusion and perspective

□ Conclusion

- ✓ ACSM suitable for video codec application
 - An high level RTL model
 - Satisfies the requirements of functional model
- \checkmark Efficient SW code generation from Simulink with RTW
 - Reduce 32% execution time than SDF
 - Reduce 46% external memory access than SDF

Perspective

 \checkmark SW generation tool for distributed implementation.

Thank you!!!

Question?