Convergence-Provable Statistical Timing Analysis with Level-Sensitive Latches and Feedback Loops

Lizheng Zhang, Weijen Chen, Yuhen Hu, Charlie Chen

Cadence, University of Wisconsin Madison,

National Taiwan University

DFM: Design for Manufacturability

Foundries and IDMs: Follow me!!

CAD Developer : Yes sir, Static-> Statistical Everything

Designer?

whatever, let's throw a die (Monte Carlo)

12 4

General Variation Sources

- Inter- and Intra-die Process Variation-W, L,....
- PVT Variations:
 - Power Fluctuation: IR-drop,....
 - □ Non-uniform Temperature Distribution
 - Vt Variation
- Crosstalk: capacitive, inductive, and substrate coupling

Interconnect Geometry Variations

Process induced variations significantly change the interconnect geometry, which directly affects interconnect models, especially parasitic capacitances.

Optical lithography (optical proximity effects)

Chemical-mechanical planarization (CMP)

Picture courtesy of TSMC, Intel Corporation.

Variations Trends

(courtesy from IBM)

Correlated and Uncorrelated (independent) Variation

Gate A delay

Gate B delay

Gate A delay

Correlated

Pessimistic Worst Case Corner Analysis (ignore correlation)

Pessimistic estimation:

□ It is very rare to have all gates behave as the worst case

Larger variation make overestimation more significant

Worst-case Timing Analysis Example

- 16-bit Adder
 - Longest path Delay
- Monte Carlo
 3σ = 1.25
- Worst-case Timing
 Delay=1.45
- Too pessimistic!
 20% overestimation

"Impact of Unrealistic Worst Case Modeling on the Performance of VLSI circuits in Deep Submicron Region CMOS Technologies" A.Nardi, A.Neviani, E.Zanoni, M.Quarantelli, *IEEE '99*

Existing Statistical Timing Analysis

- To reduce the pessimism, statistical method is applied to treat variation-induced delay variation
- Existing statistical timing method is
 - mainly focused on combinational circuit
 - □ flip-flop based sequential circuit
 - Latched circuit without feedback loops
- In this paper, we focus on SSTA of Latched circuit with feedback loops

Basic Timing Analysis

 $A_{o} = A_{i} + d$

"Statistical timing analysis using bounds and selective enumeration" Agarwal, A.; Zolotov, V.; Blaauw, D.T.; TCAD, Vol. 22(9), Sept. 2003, P1243 - P1260

Path correlation

$$X = \mu_{X} + \alpha_{X}R_{X} + \sum \beta_{Xi}G_{i}$$
$$Y = \mu_{Y} + \alpha_{Y}R_{Y} + \sum \beta_{Yi}G_{i}$$
$$Z = aX + bY = \mu_{Z} + \alpha_{Z}R_{Z} + \sum \beta_{Zi}G_{i}$$

 $\alpha_{Z} = \sqrt{a^{2} \alpha_{X}^{2} + b^{2} \alpha_{Y}^{2}}$ since R_{X} and R_{Y} are asummed to be independent

- But R_X and R_Y will have correlation since they are both dependent on R_p
- We remember the past history

Latch with Feedback Loop

- Convergence is a problem for iterative latch timing:
 - Even if mean of D converges, variance of D will still be possible to diverge
 - □ No solution available in the statistical timing so far

Latch (active high) Timing Diagram

- q_i is one of the input latch for latch _j
- C_i is clock rising edge time
- A_j is latest arrival time
- a_i is earliest arrival time
- A is the maximum delay
- Is the minimum delay
- A_j is the maximum of all possible quantity of

 $\Box max(A_{qi}, C_{qi}) + \Lambda_{qi} (delay)$

- Set time constraints $\Box A_i < C_i + T_h - s$
- Hold time constraints $\Box a_j > C_j - T_l + h$

Reduced Timing Graph

Delay Adjusted by Clock Cycle Λ =D-T

Key Concept(1)—Cycle Mean

Every loop m with p_m latch nodes in it will have a **cycle mean**(G_m) defined as the average edge weight in the loop:

$$G_m = \frac{1}{p_m} \sum_{e_{ij} \in m} \Lambda_{ij}$$

and p_m is usually called *cycle length*.

Key Concept(2)—Critical Cycle Mean

The **critical cycle mean** of the reduce timing graph, G_c , is the larger value between 0 and the largest cycle mean among all possible loops:

$$G_c = max(0, G_1, G_2, \ldots) \ge 0$$

where $G_1, G_2, ...$ are cycle means for all loops 1, 2, ... in the reduced timing graph.

Key Concept(3)—Iteration Mean

At every iteration k, each latch node i in the reduced timing graph will have an **iteration mean** defined as the latch's average latest data arrival time per iteration:

$$O_i^k = \frac{A_i^k}{k+1}$$

Iteration Mean Converges into Critical Cycle Mean

• Guarantee converging to the critical cycle mean $G_c = max(K, O_1^{\infty}, O_2^{\infty}, ..., O_N^{\infty})$

Timing Yield

- Circuit will have non-zero yield only if its critical cycle mean is non-positive
 - If positive critical cycle mean, there will be latches whose arrival time will go to infinity and violate the setup time constraints after sufficient iterations
- True yield of the circuit will have to consider setup and hold time violation probability when all latches have finite arrival time

Algorithm

- Timing core is statistical
- Iteration mean is random variable
- Simultaneous propagate mean and variance
- Proven to converge in finite iteration

Accuracy and Speed-up Compared with Monte Carlo

			$T_{97}[ps]$			CPU Time[s]		
Circuits	Gates	Latches	StatITA	MontITA	Error	StatITA	MontITA	Speedup
s298	130	14	443	452	2.0%	2.14	320	150x
s344	137	15	673	663	1.5%	0.72	295	410x
s382	164	21	548	559	2.0%	1.28	379	296x
s526	196	21	465	469	0.9%	5.76	694	120x
s641	173	19	999	998	0.1%	1.17	372	320x
s820	279	5	777	788	1.4%	1.35	692	513x
s953	401	29	862	858	0.5%	3.32	1041	314x
s1423	616	74	2088	2051	1.8%	16.0	2083	130x
s5378	1517	179	764	780	2.1%	106	12372	117x
s9234	1827	211	859	858	0.1%	101	19073	189x
s13207	3516	638	1242	1246	0.3%	231	41571	180x
s15850	3889	534	1189	1199	0.8%	540	61044	113x
s38417	11543	1636	1544	_	_	1468	$200hr^*$	$490x^{*}$
s38584	12389	1426	1430	—	—	1209	$303hr^*$	903x*
Average	_	_	—	_	1.1%	_	_	303x

Table 1: 97% yield clock cycle (T_{97}) and CPU time comparison between *StatITA* and *MontITA*. (*)Estimation is from 100 repetitions and the accuracy of StatITA is not evaluated for these circuits.

Critical Cycle Mean

Complexity

Conclusion

- Statistical timing algorithm for levelsensitive latches with feedback loops
 - Iterative algorithm with guaranteed convergence
 - Simple relationship to predict the circuit timing yield