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Yes sir,
Static-> Statistical
Everything
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General Variation Sources

B |nter- and Intra-die Process Variation-W, L,.....

B PVT Variations:

Power Fluctuation: IR-drop,....
Non-uniform Temperature Distribution

Vt Variation
B Crosstalk: capacitive, inductive, and substrate
coupling
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Interconnect Geometry Variations

B Process induced variations significantly change the interconnect
geometry, which directly affects interconnect models, especially parasitic
capacitances.

Optical lithography (optical proximity effects)
Chemical-mechanical planarization (CMP)

2. Exposure 3. Development
Opaque.__Ultra violet light

% errorin coupling capacitance

Coupling capacitance {fF)

Picture courtesy of TSMC, Intel Corporation.



Variations Trends

(courtesy from IBM)
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Correlated and Uncorrelated
(independent) Variation

Gate B delay Gate B delay
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Pessimistic Worst Case Corner Analysis
(ignore correlation)
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® Pessimistic estimation:
It is very rare to have all gates behave as the worst case
Larger variation make overestimation more significant
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Worst-case Timing Analysis
Example

o P = 16-bit Adder
K CWC tode Longest path Delay
2. = Monte Carlo
g 30 =1.25
3 B \Worst-case Timing
00 | Delay=1.45
06 67 08 09 10 LI 12 13 14 13 ® Too pessimistic!
Normalized propagation delay 20% overestimation

“Impact of Unrealistic Worst Case Modeling on the Performance
of VLSI circuits in Deep Submicron Region CMOS Technologies”
A.Nardi, A.Neviani, E.Zanoni,M.Quarantelli, IEEE '99
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Existing Statistical Timing Analysis

B To reduce the pessimism, statistical method is
applied to treat variation-induced delay variation

B Existing statistical timing method is
mainly focused on combinational circuit

flip-flop based sequential circuit
Latched circuit without feedback loops

B |n this paper, we focus on SSTA of Latched
circuit with feedback loops



Basic Timing Analysis

A, A
Ai ’K—d\ Ao . d o .
N
AZ
A = A +d A, = max(4,,4,)+ d

“Statistical timing analysis using bounds and selective
enumeration” Agarwal, A.; Zolotov, V.; Blaauw, D.T.;
TCAD, Vol. 22(9) , Sept. 2003, P1243 - P1260



Path correlation

X:ﬂX'l'aXRX"'Z B %G,
Y:ﬂy"'aYRY"'Z B G,
Z:aX+szﬂz+azRZ+z B .G,

a,=Ja’a >+ b%a? since R, and R, are asummed to be independent

m But £, and R, will have correlation since they are
both dependent on R,

B \We remember the past history



Latch with Feedback Loop

A
Distribution of D
Combinational Logic .
Iterations
@ JL‘# &
—Jpzz A
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| Latch ——J&‘# 3A
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B Convergence is a problem for iterative latch timing:

Even if mean of D converges, variance of D will still be possible
to diverge

No solution available in the statistical timing so far



Latch (active high) Timing Diagram

q; is one of the input latch for
latch

C,is clock rising edge time a,
Aj is latest arrival time _74 |
a, is earliest arrival time

/\is the maximum delay 4
A is the minimum delay
A, is the maximum of all
possible quantity of
max(A,,C,)+A, (delay) C, !
Set time constraints
A<CitT,-s

Hold time constraints
a>C-T+h




Reduced Timing Graph

Delay Adjusted by Clock Cycle A=D-T

Adjusted delay
7 from latch i to j



Key Concept(1)—Cycle Mean

Every loop m with p,, latch nodes in it will have
a cycle mean(G,,) defined as the average edge

weight in the loop:
1

Pm €ij€m

and pm is usually called cycle length.

Cycle mean=(1+1-3)/3=-0.3

@) Latch 1

Adjusted delay
7' from latch i to j
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Key Concept(2)—Critical Cycle
Mean

T he critical cycle mean of the reduce timing
graph, G, is the larger value between O and the
largest cycle mean among all possible loops:

c = max(0,G1,Go,...) >0

where G1,Go, ... are cycle means for all loops
1,2,... in the reduced timing graph.



Key Concept(3)—Iteration Mean

At every iteration k, each latch node 7 in the
reduced timing graph will have an iteration
mean defined as the latch’s average latest data
arrival time per iteration:

Ak
OF = —°
k41




Iteration Mean Converges into
Critical Cycle Mean

Critical cycle mean:
Ge=(—-1-24+14+1+4:)/5=0.2

lteration Mean

B Guarantee converging to the critical cycle mean
c = max(K, 07,05, ...,0%)
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Timing Yield

® Circuit will have non-zero yield only if its critical
cycle mean is non-positive

If positive critical cycle mean, there will be latches
whose arrival time will go to infinity and violate the
setup time constraints after sufficient iterations
B True yield of the circuit will have to consider
setup and hold time violation probability when all
latches have finite arrival time



Algorithm

® Timing core is statistical

B |teration mean is
random variable

B Simultaneous propagate

mean and variance

® Proven to converge in

finite iteration

l: procedure StatITA (ClockCycle T')

2: for (each latch i) do > initialization
3: C; = setClock ArrivalTimeF or Latch(i)

4: a.g =0; A? =0; OE' =0;

5 end for

G: E=1;

T repeat > iteration starts
8: {ai“, Ai-“ }:smtistit-ica.ETiming[(Li-“_1 , Af_l );

9. done — e

10: or (each latch 7 ) do

11: Ok = A¥/(k +1);

12: if |OF=! — OF| > threshold they

13: done = false; ot converged yet
14: ad if

15: end for

16: k=k+1;

17: until done > iteration ends
180 k=klI;

19: Ge=0; s2° = —o0; h2® = —o0;
20: for (each latch i) do
21: Ge = ma;r(Oi.“,Gc);
22: Se = ma;v(Ai" — (C; +0.5T — §),s2°);
23: he = maz((C; — 0.5T + H) — a¥® h2®);
24 end for

25: Y = Pr{maxz(G., s>, h®) =0}, > circuit yield
26: end procedure
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Accuracy and Speed-up
Compared with Monte Carlo

To7[ps] CPU Timels]

Circuits | Gates | Latches | StatlTA | MontITA | Error | StatITA | MontITA | Speedup
5208 130 14 443 452 2.0% 2.14 320 150x
s344 137 15 673 663 1.5% 0.72 205 410x
5382 164 21 548 559 2.0% 1.28 379 206x
5526 196 21 465 469 0.9% h.76 694 120x
s641 173 19 999 998 0.1% 1.17 372 320x
s820 279 5 TTT T8RS 1.4% 1.35 692 513x
s053 401 29 862 858 0.5% 3.32 1041 314x
51423 616 74 2088 2051 1.8% 16.0 2083 130x
sh3T8 1517 179 764 T80 2.1% 106 12372 117x
59234 1827 211 859 858 0.1% 101 19073 189x
513207 3516 638 1242 1246 0.3% 231 41571 180x
515850 3889 534 1189 1199 0.8% 540 61044 113x
s38417 11543 1636 1544 — — 1468 200hr* 490x*
s38584 12359 1426 1430 — — 1209 303hr* 003x*
Average — — — — 1.1% — — 303x

Table 1: 97% vield clock cycle(To7) and CPU time comparison between StatITA and MontITA.
(*)Estimation is from 100 repetitions and the accuracy of StatITA is not evaluated for these circuits.
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Complexity
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Conclusion

B Statistical timing algorithm for level-
sensitive latches with feedback loops
Iterative algorithm with guaranteed
convergence

Simple relationship to predict the circuit
timing yield



