Parameterized Block-Based Non-Gaussian Statistical Gate Timing Analysis

Soroush Abbaspour, Hanif Fatemi, Massoud Pedram University of Southern California Los Angeles, CA

Asia and South Pacific Design Automation Conference Jan 27th, 2005

- Introduction
- Motivation
- Variational Gate Timing Analysis
- Experimental Results
- Conclusion and Future Work

Circuit Delay

Circuit delay in VLSI circuits consists of two components:

- Interconnect propagation delay
 - Elmore
 - D2M
 - AWE
- Gate propagation delay
 - Total Capacitance
 - Effective Capacitance

Total Capacitance Approach

 For commercial ASIC cell libraries, it is common to characterize various output transition times as a function of the input transition time and output capacitance i.e.,

$$t_{\alpha}^{gate} = f_{\alpha}^{gate}(T_{in}, C_L)$$

- α% denotes the percentage of the output transition,
- *t*_α is the output delay with respect to the 50% point of the input signal,
- f_{α} is the corresponding delay function.

Effective Capacitance Approach

Second order RC-π model

RC- π load for effective capacitance algorithms

Iterative effective capacitance algorithm

UDSM Designs and Parameter Variations

- Circuit variability is increasing in UDSM
- Types of circuit variability
 - Intrinsic variation caused by the IC manufacturing process
 - Systematic variation (known quantitative relationship)
 - Leff
 - Random variation (uncertain)
 - Gate oxide thickness
 - Channel doping
 - ILD permittivity

Extrinsic variation caused by the operational environment

- Long term variation
 - Negative Biased Temperature Instability
 - Hot Carrier Effect
- Short term variation
 - Vdd variation
 - Temperature variation
 - L/C coupling effects

σ TA: Sources of Variations

- Global Sources of Variation (X_i)
 - Metal Layer Width Variation
 - Vdd Variation
- Independent Random Sources of Variation (S)
 - Impurity doping deviations
 - Gate oxide imperfections

Metal 2

Non-Gaussian Sources of Variations

- Sources of variation may exhibit non-Gaussian distributions
- Using the first three moments of the parameters variations to approximate the process variation
- Skewness: The degree of asymmetry of a distribution (κ)

$$\kappa = \frac{\mu_3}{\sigma^3}$$

 μ_3 is the 3rd central moment σ^2 is the second central moment

Canonical First-Order (CFO) Model for Timing Parameters

 In block-based σTA, any timing quantity (slew, delay, slack, arrival times) is modeled as follows:

 $A = a_0 + a_1 \Delta X_1 + a_2 \Delta X_2 + \dots + a_n \Delta X_n + a_{n+1} \Delta S_a$

- "a₀" is the mean or nominal value,
- "n" represents n global sources of variation,
- "ΔX_i" is the ith global source of variation with *Dist*(μ=0, σ²=1,κ)
- "ΔS_a" is the independent random source of variation
 Dist(μ=0, σ²=1, κ)
- "a_i" is the sensitivity of A to corresponding source of variation.

CFO Model for Interconnect Electrical Parameters

 We may present electrical parameters of the wire (i.e., R and C) in the CFO form. For example;

 $R = r_{nom} + r_1 \Delta X_1 + r_2 \Delta X_2 + \dots + r_n \Delta X_n + r_{n+1} \Delta S_r$

- "r_{nom}" is the nominal resistance value,
- "n" represents n global sources of variation,
- " ΔX_i " is the ith global source of variation with *Dist*(µ=0, $\sigma 2=1,\kappa$)
- " ΔS_r " represents the independent random source of variation for resistance with *Dist*(μ =0, σ 2=1, κ)
- "r_i" is the sensitivity of R to the corresponding source of variation.

Problem Statement

Given that

- each R and C is in CFO form,
- gate input transition time is in CFO form,
- gate itself experiences parameter variations.
- The objective is to find the
 - Gate delay in the CFO form,
 - Gate output slew in the CFO form.

Variational Total Capacitive Load Model

- Given is a variational CMOS driver where
 - input rise time, T_{in}, is in CFO form,
 - output capacitive load, C_L , in the CFO form.

- The objective is to find
 - gate propagation delay in CFO form,
 - output slew in the CFO form.

Solution

The gate propagation delay is a function of:

$$T_{\alpha} = f_{\alpha}(T_{in}, C_L, z)$$
 where $z = \bigvee_{L}^{W} V_T, V_{dd}, Temp, ...$

- α denotes the percentage of the output transition,
- T_{α} is the output delay with respect to 50% point of the input signal,
- f_{α} is the corresponding delay function,
- z denotes the parameter set associated with the gate.

Solution (Cont'd)

- Substitute the terms with their corresponding CFO models.
- Differentiate with respect to the global and independent random sources of variation:

$$T_{\alpha} = f_{\alpha} \left(\Delta X_{i} \Big|_{i=1...m}, \Delta S_{j} \Big|_{j=1...p} \right)^{*}$$

$$T_{\alpha} \cong f_{\alpha} \left|_{\Delta X_{i}=0}^{\Delta X_{i}=0} + \frac{m}{8} \frac{\hbar f_{\alpha}}{\hbar \Delta X_{i}} \right|_{\Delta X_{i}=0}^{\Delta X_{i}=0} \bar{7} \Delta X_{i} + \frac{p}{j=1} \frac{\hbar f_{\alpha}}{\hbar \Delta S_{i}} \left|_{\Delta X_{i}=0}^{\Delta X_{i}=0} \bar{7} \Delta S_{j} \right|_{\Delta S_{k}=0}^{\Delta X_{i}=0} \bar{7} \Delta S_{j}$$

Considering ∆S_j's as independent unit normal sources of variations, we get_____

$$T_{\alpha} \cong f_{\alpha} |_{\Delta X_{l}=0} + \underset{i=1}{\overset{m}{\underbrace{\$}}} \frac{\hbar f_{\alpha}}{\hbar \Delta X_{i}} |_{\Delta X_{l}=0} \bar{7} \Delta X_{i} + \sqrt{\overset{p}{\underbrace{\$}}} \underset{j=1}{\overset{m}{\underbrace{\$}}} \frac{\hbar f_{\alpha}}{\hbar \Delta S_{i}} |_{\Delta X_{l}=0} \bar{7} \Delta S_{t_{i}} \bar{7} \Delta S_{i} |_{\Delta X_{l}=0} \bar{7} \Delta S_{t_{i}} \bar{7} \Delta S_{i} |_{\Delta S_{k}=0} \bar$$

Variation-Aware Gate Timing Analysis Algorithm

Replace the variational RC-π load with the equivalent variational C_{eff} value

Calculate the variational gate delay/slew

RC- π Load in CFO Form

 In STA, by matching the first, second, and third moments of the admittance, we have:

$$C_n = Y_{1,in} - \frac{Y_{2,in}^2}{Y_{3,in}} \qquad R_\pi = -\frac{Y_{3,in}^2}{Y_{2,in}^3} \qquad C_f = \frac{Y_{2,in}^2}{Y_{3,in}}$$

 where Y_{k,in} is the kth moment of the admittance of the real load

RC- π Load in CFO Form (Cont'd)

$$\mathbf{Y}_{i} \qquad \mathbf{C}_{i} \qquad \mathbf{Y}_{j}$$

$$Y_i(s) = sY_{1,i} + s^2 Y_{2,i} + \dots + s^k Y_{k,i} + \dots$$

$$Y_j(s) = sY_{1,j} + s^2Y_{2,j} + \dots + s^kY_{k,j} + \dots$$

Then,

$$Y_{1,i} = Y_{1,j} + C_i$$

$$Y_{k,i} = Y_{k,j} - R_i \sum_{l=1}^{k-1} Y_{l,i} Y_{k-l,j} - R_i C_i Y_{k-1,i} \quad for \ k \ 2$$

 Using appropriate CFO forms during the recursive calculation of the admittance moments, we can obtain the π model parameter values in CFO form.

One-iteration C_{eff} Analysis

Calculating C_{eff} in the CFO form using One-iteration approach

$$c_{eff} = c_{eff,0} + \prod_{i=1}^{m} c_{eff,i} \Delta X_i + c_{eff,m+1} \Delta S_{c_{eff}}$$

• Use one-iteration approach to calculate C_{eff} in CFO form

Find the sensitivities such that

 $E \bigoplus_{i=1}^{l} c_{eff} - F \bigoplus_{i=1}^{l} w_{in}, c_{eff}, c_n, r_{\pi}, c_f \qquad \text{is minimized}$

where function F was introduced in one-iteration C_{eff} approach

Experimental Results Setup

- Our experiments use 90nm CMOS process parameters
- Two different configurations
 - two inverters connected in series
 - first inverter size *Wp/Wn* =30/15μm
 - second inverter *Wp/Wn*={20/10, 50/25, 70/35, 100/50} μm
 - inverter followed by a 2-input NAND gate
 - first inverter Wp/Wn = 30/15µm
 - 2-input NAND gate Wp/Wn={40/40, 50/50, 100/100} μm
- Ramp input to the first inverter
 - nominal value (t_{in})^{nom}={10ps,80ps,150ps,220ps,300ps}.

Pure Capacitive Load Results

- Purely capacitive load
 - nominal value (C)^{nom}= {400, 500, 800, 1400} fF
 - The scaled distribution of the sources of variation is considered to have a skewness of 0.4, 0.6, and 0.8.
- Average error of about 3%
- 89 times faster than Monte Carlo

Pure Capacitive Load Results

Table 1 : Average error for the inverter driving pure capacitive load (Skewness=0.4)							
	σ=1	15%					
Average error	Delay	Slew	Delay	Slew			
Mean	1.5%	1.7%	2.2%	2.3%			
V ariance	1.2%	1.3%	1.8%	1.9%			
Skewness	1.0%	1.1%	1.4%	1.3%			

Table 2: Average error for the inverter driving pure capacitive load(Skewness=0.8)

	σ=1	.0%	σ=1.5%		
Average error	Delay	Slew	Delay	Slew	
Mean	1.9 %	2.3%	2.5%	2.9%	
V ariance	1.6%	1.7%	1.9%	2.1%	
Skewness	1.4%	1.5%	1.5%	1.9%	

Table 3: Average error for the 2-input NAND gate driving pure capacitive load (Skewness=0.6)

	σ=1	.0%	σ=1 <i>5</i> %		
Average error	Delay	Slew	Delay	Slew	
Mean	3.0 %	3.1%	3.2%	3.1%	
V ariance	2.5%	2.7%	2.8%	2.9%	
Skewness	2.2%	2.3%	2.5%	2.6%	

General RC Load Results

- Nominal value of the total R of the load
 - (R)^{nom}= {150, 260, 300, 710, 1000}W
- Nominal value of the total C of the load
 - $(C)^{nom} = \{400, 500, 800, 1400\} fF.$
- The scaled distribution of the sources of variation is considered to have a skewness of 0.5, 0.75, and 1
- An average error of about 6%
- 95 times faster than the Monte Carlo

General RC Load Results

Table 4: Average error for the inverter driving general RC load

(Skewness=0.5)								
	σ=10%				σ=1 <i>5</i> %			
Average error	Ceff	Delay	Slew	Ceff	Delay	Slew		
Mean	3.2%	3.5%	4.9%	3.5%	5.4%	5.8%		
V ariance	2.4%	3.3%	4.5%	2.6%	5.9%	5.2%		
Skewness	2.5%	3.3%	4.9%	2.0%	5.5%	5.5%		

Table 5: Average error for the inverter driving general RC load(Skewness=0.75)

	σ=10%			σ=1 <i>5</i> %		
Average error	Ceff	Delay	Slew	Ceff	Delay	Slew
Mean	3.5%	5.1 %	5.3%	3.8%	5.9%	6.1%
V ariance	2.9%	4.3%	5.5%	3.6%	6.2%	6.2%
Skewness	2.8%	4.1%	4.9%	3.1%	5.9%	5.9%

Table 6: Average error for the 2-input NAND gate driving general RC load (Skewness=1)

	σ=10%			σ=1 <i>5</i> %		
Average error	Ceff	Delay	Slew	Ceff	Delay	Slew
Mean	4.1%	5.2 %	5.1%	4.2%	6.1%	6.7%
V ariance	3.9%	5.4%	5.2%	4.3%	6.1%	6.1%
Skewness	4.0%	6.1%	5.6%	4.2%	6.5%	6.3%

Conclusion and Future Work

- Variability increases as we go toward UDSM technologies
- A solution for parameterized block-based Non-Gaussian gate timing analysis is proposed
- A more exact gate model for statistical analysis purpose?
- How to perform statistical gate timing analysis in the presence of noise?

Thank you!

One-iteration C_{eff} Analysis (Cont'd)

$$C_{eff}^{Exp}(\theta) = C_n + k_{Exp}(\theta) C_f \quad \text{where}$$

$$k_{Exp}(\theta) = \left(\frac{1}{2} + \frac{y}{\theta} \left(e^{\ln(1-\theta)/y} - 1 \right) \quad \text{and} \quad y = \ln \frac{\frac{1}{2} - \alpha}{\frac{1}{2} - \beta} \right) \frac{R_\pi C_f}{T_{R(\alpha - \beta)}}$$

$$C_{eff}^{Ramp}(\theta) = C_n + k_{Ramp}(\theta) C_f \quad \text{where}$$

$$k_{Ramp}(\theta) = \left(\frac{1}{2} - \frac{x}{\theta} \left(1 - e^{-\theta/x} \right) \right) \quad \text{and} \quad x = (\beta - \alpha) \frac{R_\pi C_f}{T_{R(\alpha - \beta)}}$$

Therfore;

 $c_{eff}(\theta) = F(t_r(t_{in}, c_{eff}(\theta)), c_n.r_{\pi}, c_f)$