

Mongkol Ekpanyapong, Thaisiri Watewai* and Sung Kyu Lim

School of Electrical and Computer Engineering Georgia Institute of Technology

Department of Industrial Engineering and Operations Research University of California, Berkeley*

- Introduction and Motivation
- Related Work
- Methodology
- Experimental Results
- Conclusions

Deep Submicron Design

Make transistor on the same die having different delay

Deep Submicron Design Issues

Harder to get exact desired transistor size even on the same die

Transistor size has directed impact on transistor delay

Timing calculation becomes more complex

Not only transistor size, wire size can also suffer from this variations

Static Timing Analysis

Statistical Timing Analysis (Assume Gaussian distribution)

- Introduction and Motivation
- Related Work
- Methodology
- Experimental Results
- Conclusions

Related Work

Chang, H. and Sapatnekar, S, Statistical timing analysis considering spatial correlations using a single pert-like traversal, ICCAD03

 Visweswariah, C., Ravindran, K., Kalafala, K., Walker, S., and Narayan, S., *First-order incremental block-based statistical timing analysis*, DAC 04

Chen, R. and Zhou, H., Clock schedule verication under process variations, ICCAD04

Cong, J. and Lim, S. K., Retiming-based timing analysis with an application to mincut-based global placement, TCAD04

- Introduction and Motivation
- Related Work
- Methodology
- Experimental Results
- Conclusions

What Make SSTA Difficult?

Correlation

Maximum/Minimum function's approximation

Correlation

Reconvergence Path Correlation

Spatial Correlation

	Ъ́Ф́Ф́	ф. ф. ф.	Ð	Ģ Ģ	Ð	Ð	ф ф
)-)- 1-	-Ð- : -Ð:	₽ ₽ ₽	ά ά	Đ	ф Ф	Ц Д
Ð- Ð-	₽ ₽ ₽	0 0,0 0,0	ф ф ф	ά ά	0 0 0 0	ф ф	Ð D
1)- 1 1)-		÷Ð	€- >	:0	Ð	: 	D-

Principal Component Analysis

Delay estimation with variation

$$\begin{split} \mathsf{d} = & \mathsf{d}_0 \quad + \sum_{i \in \Gamma_g} [\frac{\partial d}{\partial L_g^i}] \triangle L_g^i + \sum_{i \in \Gamma_g} [\frac{\partial d}{\partial W_g^i}] \triangle W_g^i \\ & + \sum_{i \in \Gamma_{int}} [\frac{\partial d}{\partial T_{int}^i}] \triangle T_{int}^i \end{split}$$

 Principal component analysis classifies each coefficient into orthogonal terms

$$\mathbf{a}_0 + \Sigma_{i=1}^n \mathbf{a}_i \Delta \mathbf{x}_i + \mathbf{a}_{n+1} \Delta \mathbf{R}_a$$

$$b_0 + \Sigma_{i=1}^n b_i \Delta x_i + b_{n+1} \Delta R_b$$

 $\phi(x) \equiv \frac{1}{\sqrt{2\pi}} exp(-\frac{x^2}{2}) \quad (1)$ $\Phi(y) \equiv \int_{-infty}^{y} \phi(x) dx \quad (2)$ $\theta \equiv (\sigma_A^2 + \sigma_B^2 - 2\rho\sigma_A\sigma_B)^{1/2} \quad (3)$ $T_A = \int_{-\infty}^{\infty} \frac{1}{\sigma_A} \phi\left(\frac{x - a_0}{\sigma_A}\right) \Phi\left(\frac{\left(\frac{x - b_0}{\sigma_B}\right) - \rho\left(\frac{x - a_0}{\sigma_A}\right)}{\sqrt{1 - p^2}}\right) dx \quad (4)$ $E[max(A,B)] = a_0 T_A + b_0 (1 - T_A) + \theta \phi[\frac{a_0 - b_0}{\rho}]$ (5) $var[max(A, B)] = (\sigma_A^2 + a_0^2)T_A + (\sigma_B^2 + b_0^2)(1 - T_A) +$ $(a_0 + b_0)\theta\phi(\frac{a_0 - b_0}{\rho}) - \{E[max(A, B)]\}^2$ (6)

Distribution Approximation

 Assume Gaussian distribution (can be represented by using mean and standard variation)

Addition/Subtraction function results in Gaussian distribution as a solution

Probability density function of Gaussian distribution

 Maximum/Minimum function approximation results in a new kind of distribution

Distribution Approximation

 Assume Gaussian distribution (can be represented by using mean and standard variation)

Addition/Subtraction function can be computed using convolution

 Maximum/Minimum function approximation results in a new kind of distribution

Probability density function of Gaussian distribution

- Retiming Algorithm
 - Can handle sequential circuits

- Bellman-Ford Algorithm
 - Can be modified to handle Statistical Timing Analysis
 - Faster comparing with other approaches

Longest Path Bellman-Ford Algorithm

Bellman-Ford Algorithm input: directed graph (G, w, s)output: longest path lengths from s 1. for (each $v \in V$) 2. $a[v] \leftarrow -\infty;$ 3. $a[s] \leftarrow 0;$ 4. *iter* \leftarrow 1; 5. while (STOP = FALSE and *iter* < |V|) 6 $iter \leftarrow iter + 1;$ 7 STOP = TRUE;for (each edge $(u, v) \in E$) 8. 9. if (a[v] < a[u] + w(u, v))10. $a[v] \leftarrow a[u] + w(u, v);$ STOP = FALSE;11 12. for (each $(u, v) \in E$) if (a[v] < a[u] + w(u, v))13. 14. return (FALSE); 15. return (TRUE);

Longest Path Bellman-Ford Algorithm

Bellman-Ford Algorithm input: directed graph (G, w, s)output: longest path lengths from s 1. for (each $v \in V$) 2. $a[v] \leftarrow -\infty;$ 3. $a[s] \leftarrow 0;$ 4. *iter* \leftarrow 1; 5. while (STOP = FALSE and *iter* < |V|) 6 $iter \leftarrow iter + 1;$ 7 STOP = TRUE;for (each edge $(u, v) \in E$) 8. 9. if (a[v] < a[u] + w(u, v))10. $a[v] \leftarrow a[u] + w(u, v);$ STOP = FALSE;11 12. for (each $(u, v) \in E$) if (a[v] < a[u] + w(u, v))13. 14. return (FALSE); 15. return (TRUE);

Longest Path Bellman-Ford Algorithm

Bellman-Ford Algorithm input: directed graph (G, w, s)output: longest path lengths from s 1. for (each $v \in V$) 2. $a[v] \leftarrow -\infty;$ 3. $a[s] \leftarrow 0;$ 4. *iter* \leftarrow 1; 5. while (STOP = FALSE and *iter* < |V|) 6 $iter \leftarrow iter + 1;$ 7 STOP = TRUE;for (each edge $(u, v) \in E$) 8. 9. if (a[v] < a[u] + w(u, v))10. $a[v] \leftarrow a[u] + w(u, v);$ STOP = FALSE;11 12. for (each $(u, v) \in E$) if (a[v] < a[u] + w(u, v))13. 14. return (FALSE); 15. return (TRUE);

The approximation error can cause infinite update

If error bound technique is used, some paths can be ignored

The approximation error can cause infinite update

If error bound technique is used, some paths can be ignored

The approximation error can cause infinite update

If error bound technique is used, some paths can be ignored

Error bound = 0.2

K-bounded Statistical Bellman-Ford Algorithm input: directed graph G with node/edge delay pdf output: longest path length distribution from source DFS(s) to find all backward edges; 2. for (each $v \in V$) 3. if (backward edge connected to v) 4. $BN \leftarrow v;$ 5. K = 0: 6. for (each $v \in BN$) 7. perform DFS(v); k = |backward nodes connected to v|; 8. if (K < k)9. 10 K = k;11. for (each $v \in V$) 12. $a[v] \leftarrow -\infty;$ 13. $a[s] \leftarrow 0;$ 14. for (itr = 1 to k + 1)15. for (each $v \in V$) $a[v] \leftarrow max_{u \in FI(v)}(a[u] + d(v) + d(u, v));$ 16. 17. $\mathbf{P}(cycle) \leftarrow check_pos_cycle();$ 18. if $(\mathbf{P}(cycle) \leq \mathbf{P}a)$ 19. return (FALSE); 20. return (TRUE);

Backward node

Retiming Delay Computation

Arrival time computation

$$\phi \ge a[t] = \max_{i=1,\dots,K} \{\psi_i - \kappa_i \phi\}$$

- Maximum cycle computation
 - $\zeta_j = \xi_j \sigma_j \phi \le 0 \qquad \qquad j = 1 \dots, C.$

Retiming delay computation

$$\phi = \max\left[\max_{i=1\dots,K}\left\{\frac{\psi_i}{\kappa_i+1}\right\}, \max_{j=1\dots,C}\left\{\frac{\xi_j}{\sigma_j}\right\}\right]$$

Algorithm for Maximum Cycle Distribution/Positive Cycle Detection

Based on modified algorithm by Chen et al, ICCAD04

Algorithm for Maximum Cycle Distribution/Positive Cycle Detection

Removing backward edge and compute cycle distribution from new src to new sink of the new graph

mean (µ) + 3 \cdot std. variation (\sigma) \leq 0

Bound on Retiming Delay

- Definition
- $\varphi^{\scriptscriptstyle I}$: the value of clock period when gate and interconnect are replaced by best case delay value
- $\phi^{\rm m}$: the value of clock period when gate and interconnect are replaced by mean case delay value
- φ^{u} : the value of clock period when gate and interconnect are replaced by worst case delay value

 $\bullet \varphi^{\mathsf{I}} \leq \varphi \leq \varphi^{\mathsf{u}}$

• $\phi^m \leq \mathsf{E}[\phi]$

- Introduction and Motivation
- Related Work
- Methodology
- Experimental Results
- Conclusions

L	W	Tox	W	Η	Т
0.099	-0.099	-0.095	0.019	-0.133	-0.12

Benchmark Characteristics

cltt	gate	PI	PO	FF	K+1	b-node
s5378	2828	36	49	163	76	95
s9234	5597	36	39	211	239	354
s13207	8027	31	121	669	510	637
s15850	9786	14	87	597	495	699
s38417	22397	28	106	1636	1444	1660
s38584	19407	12	278	1452	1860	2054
b14o	5401	32	299	245	451	616
b15o	7092	37	519	449	988	1408
b20o	11979	32	512	490	1486	2197
b21o	12156	32	512	490	1511	2209
b22o	17351	32	725	703	1870	2770

Distribution Comparison on S5378

31 November, 2005

CREST GEORGIA TECH

Distribution Comparison

	Monte-Carlo		eS	BF	kSBF	
ckt	mean	std.dev.	mean	std.dev.	mean	std.dev.
s5378	179.65	6.27	163.29	5.49	179.47	6.51
s9234	229.24	16.18	164.58	7.14	225.53	10.51
s13207	304.93	13.27	279.47	8.72	305.76	13.05
s15850	363.16	15.83	317.32	7.57	363.37	15.72
s38417	187.11	4.53	184.95	5.28	189.00	8.41
s38584	437.02	19.41	399.62	10.45	436.75	19.33
b14o	161.19	10.70	117.42	5.37	160.43	5.31
b15o	247.00	10.00	212.72	18.45	247.88	10.23
b20o	259.68	9.03	229.16	6.12	267.13	9.33
b21o	267.57	6.18	240.01	4.08	267.98	9.24
b22o	286.63	18.92	300.49	25.17	320.62	15.26
runtime	21 days		2.7 hours		3.7 hours	

32 November, 2005

Worst Case Delay Comparison

	Normal dly		Retiming dly		
ckt	deter	stat	deter	stat	
s5378	66.96	57.25	58	49.19	
s9234	110.2	94.98	65	53.62	
s13207	117.26	105.47	101	82.34	
s15850	147.05	124.62	112	86.47	
s38417	83.38	72.49	54	53.83	
s38584	116.95	103.95	102	83.51	
b14o	90.53	79.27	61	56.6	
b15o	99.11	88.28	73	58.69	
b20o	136.12	114.78	83	70.75	
b21o	163.54	139.15	90	77.91	
b22o	145.45	121.96	85	72.05	
Avg.	1	0.87	0.7	0.6	

Algorithm Summary

	STA	SSTA	RTA	SRTA
goal	computation of deterministic	computation of statistical	computation of deterministic	computation of statistical
	timing slack values in com-	timing slack distribution in	timing slack values after re-	timing slack distribution
	binational circuits	combinational circuits	timing in sequential circuits	after retiming in sequential
				circuits
delay values	deterministic	statistical distribution	deterministic	statistical distribution
retiming	no	no	yes	yes
circuit graph	directed acyclic graph, FF re-	directed acyclic graph, FF re-	cyclic retiming graph, FF be-	cyclic retiming graph, FF be-
	moved	moved	comes edge weight	comes edge weight
basic algorithm	topological sort	topological sort, statistical	Bellman-Ford	Bellman-Ford, statistical
		min/max and arithmetic op-		min/max and arithmetic
		eration		operation
approach	visit nodes in forward	visit nodes in forward (back-	compute longest path for	compute "statistical longest
	(backward) topological order	ward) topological order to	cyclic graph with negative	path distribution" and "slack
	to compute arrival (require)	compute and propagate sta-	edge weights to compute	distribution after retiming"
	time.	tistical arrival (require) time	timing slack after retiming.	with statistical Bellman-Ford
		distribution.		algorithm
complexity	O(n)	O(n)	$O(n^2)$, $O(k \cdot n)$ in practice	$O(n^2)$, $O(k \cdot n)$ in practice
advantage	simple and fastest	handle statistical analysis	model FFs and predict delay	perform statistical retiming
			after retiming	and report delay distribution
				after retiming
disadvantage	can't handle retiming nor sta-	slow and no retiming consid-	slow and can't handle statis-	slow
	tistical variations	eration	tical variations	

۰.

- Introduction and Motivation
- Related Work
- Methodology
- Experimental Results
- Conclusions

- In deep submicron design, it is harder to control process parameters.
- Process variation will make timing analysis more difficult
- Here, we propose Statistical Bellman-Ford algorithm that can be used to compute longest path with cycle
- We show that our result is accurate comparing with Monte-Carlo simulation

