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Why Statistical Methods?

 Intra-die variations 
become dominant

 Corner-based design 
flow leads to over 
design or yield loss

 Statistical methods 
are needed not only in 
simulation but also in 
design tools. 

Temperature Variation in Cell Processor
Dac C. Pham, et al. ISSCC05 



  

Variations, Performance and Yield
 Variation sources

 Process variations
 Gate length variation
 Geometric variation in interconnection wires

 Temperature variations
 Supply voltage variations

 Statistical models for circuits have been proposed
 New algorithm considering variations are needed 

for performance/yield optimization



  

Statistical Model for Variations

 Use mean µ and variance σ2 to capture the 
random property of variations

 Exact for Gaussian, uniform, binominal, 
exponential distributions and etc.

 Good approximation for arbitrary random 
variables



  

Statistical Model for Variations
 Mean and variance are additive, but not 

the standard deviation σ
 Recall the Chebyshev’s Inequality:

 The cost function µ+kσ is important to yield 
optimization

 σ not additive presents difficulties in 
solving statistical graph problems
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Statistical Shortest Path Problem

 Edge weights are 
random variables

 To find a path with 
minimum µ+Φ(σ2) value

 Existing methods 
cannot solve this 
problem
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From Deterministic to Statistical

Path weight ( µP , σP
2) Path weight Σw

Minimize µP+Φ(σP
2) Minimize Σw

µ,σ2 are additivew is additive

Edge weight ( µ,σ2) Edge weight w

StatisticalDeterministic



  

Statistical Shortest Path Problem

 Given a directed graph G 
 Not necessarily a DAG

 Find a path p from source vertex s to sink 
vertex t such that
 µP+Φ(σP

2) is minimized

 Path weight of p is a random variable with 
mean µP and variance σP
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Practical Observations for EDA problems
 µ, σ2 are additive
 For yield optimization problems 

 σ2 is bounded 
 σ2 can be discretized without introducing much 

error
 We may assume the variance σ2 of path 

weight are integers upper bounded by B, 
i.e.,  σ2 ≤ B



  

Algorithm for Solving SSP Problem

 Vertex splitting for µ, σ2 

 Graph expansion to generate a new 
graph G’

 G’ has real numbers as its edge weights
 Each vertex u in G is split into a set of 

vertices in G’:  {u1,u2, … , uB}



  

Graph Expansion – Source Node

 From source to other 
vertices

 Only expand vertex a
 Each new vertex ai 

corresponds to a with 
variance i

 Edge weight is µ
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Graph Expansion – Internal Nodes

 Assuming vertex u is 
already split

 Its neighbor v will be 
also split

 Edges are connected 
according to σ2  of path 
weight

 Edge weight are µ
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Graph Expansion – Sink Node

 Original sink node is 
already split according to 
previous steps

 Add a super sink node t’
 Edge weight for edge ti 

to t’ is Φ(i) 
 Note that any path from 

source to ti  has variance 
equals to i
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From Arbitrary Graph to DAG

 There will be no loop in 
expanded graph since 
σ2 > 0
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SSP Algorithm

 The expanded graph G’ is a DAG
 Shortest path in G’ can be found by 

existing deterministic shortest path 
algorithms for DAG

 This path corresponds to a path in G that 
minimizes µP+Φ(σP

2)
 Time complexity is O(B(V+E))



  

Improvement
 Only split a vertex whenever it is 

necessary; don’t split all vertices
 Remove redundant vertices during 

splitting
 If paths have same variance, then the one 

with larger mean is redundant
 If Φ(σP

2) is a monotonically increasing function, 
paths with larger mean and variance are 
redundant



  

Example
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SSP Algorithm Improved

 Much less vertices are generated
 100 vertices needed for previous example with 

original approach
 10 vertices used with improved algorithm

 Expand graph simultaneously with 
searching the shortest path

 Much faster with less memory requirement



  

EDA applications

 Maze Routing
 Timing Analysis
 Buffer Insertion



  

Maze Routing

 Timing-driven maze 
routing

 Process Variations
 Systematic variations
 Random variations
 Temperature variations

 Find the shortest path 
to improve the 
performance



  

Maze Routing

No Variations considered Variations considered

Hot Cell Cold Cell



  

Timing Analysis

 Find the longest delay path considering 
intra-die variations

 Large circuits with several logic levels 
 Gaussian distribution for the path delay

 µP+3σP  is used to measure the timing-yield

 Our algorithm can also find the (path) candidates 
with longest delay 



  

Timing Analysis 

 ISCAS benchmarks
 Cell delays are not necessarily Gaussian
 40X—1000X runtime improvement over 

Monte Carlo simulation 
 Very little error compare to Monte Carlo 

method



  

Buffer Insertion

 Buffer insertion in 2-pin net can be 
formulated into shortest path problem

 With variations from both devices and 
interconnections, it should be formulated 
into statistical shortest path problem

 Our algorithm can solve this buffer 
insertion with variations consideration



  

Buffer Insertion 
 Graph based approach
 Formulated as a shortest path problem 

Shortest Path

Drive LoadBuffer



  

Conclusion

 Exact algorithm to solve the statistical 
shortest path problem

 Arbitrary graph, arbitrary cost function Φ
 Efficient implementation
 Can be used in varieties of  applications in 

nanometer design


