An Exact Algorithm for the Statistical Shortest Path Problem

Liang Deng and Martin D. F. Wong
Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Outline

- Motivation
- Statistical shortest path (SSP) problem
- Our exact algorithm for SSP problem
- Applications
- Maze Routing
- Timing Analysis
- Buffer Insertion

Why Statistical Methods?

- Intra-die variations become dominant
- Corner-based design flow leads to over design or yield loss
- Statistical methods are needed not only in simulation but also in design tools.

Temperature Variation in Cell Processor Dac C. Pham, et al. ISSCC05

Variations, Performance and Yield

- Variation sources
- Process variations
- Gate length variation
\square Geometric variation in interconnection wires
- Temperature variations
- Supply voltage variations
- Statistical models for circuits have been proposed
- New algorithm considering variations are needed for performance/yield optimization

Statistical Model for Variations

- Use mean μ and variance σ^{2} to capture the random property of variations
- Exact for Gaussian, uniform, binominal, exponential distributions and etc.
\square Good approximation for arbitrary random variables

Statistical Model for Variations

\square Mean and variance are additive, but not the standard deviation σ

- Recall the Chebyshev's Inequality:

$$
P(|X-\mu| \leq k \sigma)>1-\frac{1}{k^{2}}
$$

- The cost function $\mu+k \sigma$ is important to yield optimization
- σ not additive presents difficulties in solving statistical graph problems

Statistical Shortest Path Problem

- Edge weights are random variables
- To find a path with minimum $\mu+\Phi\left(\sigma^{2}\right)$ value
- Existing methods cannot solve this problem

Edge weight: (mean, variance)

From Deterministic to Statistical

Deterministic	Statistical
Edge weight w	Edge weight $\left(\mu, \sigma^{2}\right)$
w is additive	μ, σ^{2} are additive
Path weight Σw	Path weight $\left(\mu_{P}, \sigma_{P}{ }^{2}\right)$
Minimize Σw	Minimize $\mu_{P}+\Phi\left(\sigma_{P}{ }^{2}\right)$

Statistical Shortest Path Problem

- Given a directed graph G
- Not necessarily a DAG
\square Find a path p from source vertex s to sink vertex t such that
- $\mu_{P}+\Phi\left(\sigma_{P}{ }^{2}\right)$ is minimized
- Path weight of p is a random variable with mean μ_{P} and variance $\sigma_{P}{ }^{2}$

Practical Observations for EDA problems

$\square \mu, \sigma^{2}$ are additive
\square For yield optimization problems

- σ^{2} is bounded
- σ^{2} can be discretized without introducing much error
- We may assume the variance σ^{2} of path weight are integers upper bounded by B, i.e., $\sigma^{2} \leq B$

Algorithm for Solving SSP Problem

\square Vertex splitting for μ, σ^{2}
\square Graph expansion to generate a new graph G^{\prime}
$\square G^{\prime}$ has real numbers as its edge weights

- Each vertex u in G is split into a set of vertices in $G^{\prime}:\left\{u_{p}, u_{2}, \ldots, u_{B}\right\}$

Graph Expansion - Source Node

- From source to other vertices
- Only expand vertex a
\square Each new vertex $\mathbf{a}_{\mathbf{i}}$ corresponds to a with variance i
- Edge weight is μ

Graph Expansion - Internal Nodes

- Assuming vertex u is already split
\square Its neighbor v will be also split
- Edges are connected according to σ^{2} of path weight
- Edge weight are μ

Graph Expansion - Sink Node

- Original sink node is already split according to previous steps
- Add a super sink node t^{\prime}
- Edge weight for edge $t i$ to t^{\prime} is $\Phi(i)$
- Note that any path from source to ti has variance equals to i

From Arbitrary Graph to DAG

- There will be no loop in expanded graph since $\sigma^{2}>0$

SSP Algorithm

\square The expanded graph G^{\prime} is a DAG

- Shortest path in G^{\prime} can be found by existing deterministic shortest path algorithms for DAG
- This path corresponds to a path in G that minimizes $\mu_{P}+\Phi\left(\sigma_{P}{ }^{2}\right)$
- Time complexity is $O(B(V+E))$

Improvement

- Only split a vertex whenever it is necessary; don't split all vertices
- Remove redundant vertices during splitting
- If paths have same variance, then the one with larger mean is redundant
- If $\Phi\left(\sigma_{P}^{2}\right)$ is a monotonically increasing function, paths with larger mean and variance are redundant

Example

Edge weight: (mean, variance)

$$
\Phi(x)=3 \sqrt{x}
$$

SSP Algorithm Improved

\square Much less vertices are generated

- 100 vertices needed for previous example with original approach
- 10 vertices used with improved algorithm
- Expand graph simultaneously with searching the shortest path
\square Much faster with less memory requirement

EDA applications

- Maze Routing
- Timing Analysis
- Buffer Insertion

Maze Routing

- Timing-driven maze routing
- Process Variations
- Systematic variations
- Random variations
- Temperature variations
- Find the shortest path to improve the performance

Maze Routing

No Variations considered

Variations considered

Timing Analysis

\square Find the longest delay path considering intra-die variations

- Large circuits with several logic levels
- Gaussian distribution for the path delay
- $\mu_{P}+3 \sigma_{P}$ is used to measure the timing-yield
- Our algorithm can also find the (path) candidates with longest delay

Timing Analysis

\square ISCAS benchmarks

- Cell delays are not necessarily Gaussian
- 40X-1000X runtime improvement over Monte Carlo simulation
- Very little error compare to Monte Carlo method

Buffer Insertion

- Buffer insertion in 2-pin net can be formulated into shortest path problem
\square With variations from both devices and interconnections, it should be formulated into statistical shortest path problem
- Our algorithm can solve this buffer insertion with variations consideration

Buffer Insertion

- Graph based approach
\square Formulated as a shortest path problem

Conclusion

- Exact algorithm to solve the statistical shortest path problem
\square Arbitrary graph, arbitrary cost function Φ
- Efficient implementation
- Can be used in varieties of applications in nanometer design

