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Why Statistical Methods?

 Intra-die variations 
become dominant

 Corner-based design 
flow leads to over 
design or yield loss

 Statistical methods 
are needed not only in 
simulation but also in 
design tools. 
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Variations, Performance and Yield
 Variation sources

 Process variations
 Gate length variation
 Geometric variation in interconnection wires

 Temperature variations
 Supply voltage variations

 Statistical models for circuits have been proposed
 New algorithm considering variations are needed 

for performance/yield optimization



  

Statistical Model for Variations

 Use mean µ and variance σ2 to capture the 
random property of variations

 Exact for Gaussian, uniform, binominal, 
exponential distributions and etc.

 Good approximation for arbitrary random 
variables



  

Statistical Model for Variations
 Mean and variance are additive, but not 

the standard deviation σ
 Recall the Chebyshev’s Inequality:

 The cost function µ+kσ is important to yield 
optimization

 σ not additive presents difficulties in 
solving statistical graph problems
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Statistical Shortest Path Problem

 Edge weights are 
random variables

 To find a path with 
minimum µ+Φ(σ2) value

 Existing methods 
cannot solve this 
problem
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From Deterministic to Statistical

Path weight ( µP , σP
2) Path weight Σw

Minimize µP+Φ(σP
2) Minimize Σw

µ,σ2 are additivew is additive

Edge weight ( µ,σ2) Edge weight w

StatisticalDeterministic



  

Statistical Shortest Path Problem

 Given a directed graph G 
 Not necessarily a DAG

 Find a path p from source vertex s to sink 
vertex t such that
 µP+Φ(σP

2) is minimized

 Path weight of p is a random variable with 
mean µP and variance σP
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Practical Observations for EDA problems
 µ, σ2 are additive
 For yield optimization problems 

 σ2 is bounded 
 σ2 can be discretized without introducing much 

error
 We may assume the variance σ2 of path 

weight are integers upper bounded by B, 
i.e.,  σ2 ≤ B



  

Algorithm for Solving SSP Problem

 Vertex splitting for µ, σ2 

 Graph expansion to generate a new 
graph G’

 G’ has real numbers as its edge weights
 Each vertex u in G is split into a set of 

vertices in G’:  {u1,u2, … , uB}



  

Graph Expansion – Source Node

 From source to other 
vertices

 Only expand vertex a
 Each new vertex ai 

corresponds to a with 
variance i

 Edge weight is µ

s a(μ, σ2)
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Graph Expansion – Internal Nodes

 Assuming vertex u is 
already split

 Its neighbor v will be 
also split

 Edges are connected 
according to σ2  of path 
weight

 Edge weight are µ

u v(μ, σ2)
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Graph Expansion – Sink Node

 Original sink node is 
already split according to 
previous steps

 Add a super sink node t’
 Edge weight for edge ti 

to t’ is Φ(i) 
 Note that any path from 

source to ti  has variance 
equals to i
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From Arbitrary Graph to DAG

 There will be no loop in 
expanded graph since 
σ2 > 0
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SSP Algorithm

 The expanded graph G’ is a DAG
 Shortest path in G’ can be found by 

existing deterministic shortest path 
algorithms for DAG

 This path corresponds to a path in G that 
minimizes µP+Φ(σP

2)
 Time complexity is O(B(V+E))



  

Improvement
 Only split a vertex whenever it is 

necessary; don’t split all vertices
 Remove redundant vertices during 

splitting
 If paths have same variance, then the one 

with larger mean is redundant
 If Φ(σP

2) is a monotonically increasing function, 
paths with larger mean and variance are 
redundant



  

Example
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SSP Algorithm Improved

 Much less vertices are generated
 100 vertices needed for previous example with 

original approach
 10 vertices used with improved algorithm

 Expand graph simultaneously with 
searching the shortest path

 Much faster with less memory requirement



  

EDA applications

 Maze Routing
 Timing Analysis
 Buffer Insertion



  

Maze Routing

 Timing-driven maze 
routing

 Process Variations
 Systematic variations
 Random variations
 Temperature variations

 Find the shortest path 
to improve the 
performance



  

Maze Routing

No Variations considered Variations considered

Hot Cell Cold Cell



  

Timing Analysis

 Find the longest delay path considering 
intra-die variations

 Large circuits with several logic levels 
 Gaussian distribution for the path delay

 µP+3σP  is used to measure the timing-yield

 Our algorithm can also find the (path) candidates 
with longest delay 



  

Timing Analysis 

 ISCAS benchmarks
 Cell delays are not necessarily Gaussian
 40X—1000X runtime improvement over 

Monte Carlo simulation 
 Very little error compare to Monte Carlo 

method



  

Buffer Insertion

 Buffer insertion in 2-pin net can be 
formulated into shortest path problem

 With variations from both devices and 
interconnections, it should be formulated 
into statistical shortest path problem

 Our algorithm can solve this buffer 
insertion with variations consideration



  

Buffer Insertion 
 Graph based approach
 Formulated as a shortest path problem 

Shortest Path

Drive LoadBuffer



  

Conclusion

 Exact algorithm to solve the statistical 
shortest path problem

 Arbitrary graph, arbitrary cost function Φ
 Efficient implementation
 Can be used in varieties of  applications in 

nanometer design


