An Exact Algorithm for the Statistical Shortest Path Problem

Liang Deng and Martin D. F. Wong Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Outline

- Motivation
- Statistical shortest path (SSP) problem
- Our exact algorithm for SSP problem
- Applications
 - Maze Routing
 - Timing Analysis
 - Buffer Insertion

Why Statistical Methods?

- Intra-die variations become dominant
- Corner-based design flow leads to over design or yield loss
- Statistical methods are needed not only in simulation but also in design tools.

Temperature Variation in Cell Processor Dac C. Pham, et al. ISSCC05

Variations, Performance and Yield

Variation sources

- Process variations
 - Gate length variation
 - Geometric variation in interconnection wires
- Temperature variations
- Supply voltage variations
- Statistical models for circuits have been proposed
- New algorithm considering variations are needed for performance/yield optimization

Statistical Model for Variations

- Use mean μ and variance σ² to capture the random property of variations
- Exact for Gaussian, uniform, binominal, exponential distributions and etc.
- Good approximation for arbitrary random variables

Statistical Model for Variations

- Mean and variance are additive, but not the standard deviation σ
- Recall the Chebyshev's Inequality: $P(|X - \mu| \le k\sigma) > 1 - \frac{1}{k^2}$
- □ The cost function $\mu + k\sigma$ is important to yield optimization
- σ not additive presents difficulties in solving statistical graph problems

Statistical Shortest Path Problem

- Edge weights are random variables
- **D** To find a path with minimum $\mu + \Phi(\sigma^2)$ value
- Existing methods cannot solve this problem

Edge weight: (mean, variance)

From Deterministic to Statistical

Deterministic	Statistical
Edge weight w	Edge weight (μ,σ^2)
w is additive	μ, σ^2 are additive
Path weight Σw	Path weight (μ_P , σ_P^2)
$Minimize \Sigma w$	Minimize $\mu_P + \Phi(\sigma_P^2)$

Statistical Shortest Path Problem

Given a directed graph G

- Not necessarily a DAG
- Find a path p from source vertex s to sink vertex t such that
 - $\mu_P + \Phi(\sigma_P^2)$ is minimized
 - Path weight of p is a random variable with mean μ_p and variance σ_p^2

Practical Observations for EDA problems

- \square μ , σ^2 are additive
- For yield optimization problems
 - σ^2 is bounded
 - σ² can be discretized without introducing much error
- We may assume the variance σ^2 of path weight are integers upper bounded by *B*, i.e., $\sigma^2 \leq B$

Algorithm for Solving SSP Problem

- Vertex splitting for μ , σ^2
- Graph expansion to generate a new graph G'
- G' has real numbers as its edge weights
- □ Each vertex u in G is split into a set of vertices in G': $\{u_1, u_2, \dots, u_B\}$

Graph Expansion – Source Node

- From source to other vertices
- Only expand vertex a
- Each new vertex a_i corresponds to a with variance i
- **\square** Edge weight is μ

Graph Expansion – Internal Nodes

- Assuming vertex u is already split
- Its neighbor v will be also split
- Edges are connected according to σ² of path weight
- **\square** Edge weight are μ

Graph Expansion – Sink Node

- Original sink node is already split according to previous steps
- Add a super sink node t'
- Edge weight for edge ti to t' is Φ(i)
- Note that any path from source to *ti* has variance equals to *i*

From Arbitrary Graph to DAG

SSP Algorithm

- □ The expanded graph G' is a DAG
- Shortest path in G' can be found by existing deterministic shortest path algorithms for DAG
- □ This path corresponds to a path in *G* that minimizes $\mu_P + \Phi(\sigma_P^2)$
- **\Box** Time complexity is O(B(V+E))

Improvement

- Only split a vertex whenever it is necessary; don't split all vertices
- Remove redundant vertices during splitting
 - If paths have same variance, then the one with larger mean is redundant
 - If $\Phi(\sigma_{P}^{2})$ is a monotonically increasing function, paths with larger mean and variance are redundant

Example

e'

SSP Algorithm Improved

Much less vertices are generated

- 100 vertices needed for previous example with original approach
- 10 vertices used with improved algorithm
- Expand graph simultaneously with searching the shortest path
- Much faster with less memory requirement

EDA applications

- Maze Routing
- Timing Analysis
- Buffer Insertion

Maze Routing

- Timing-driven maze routing
- Process Variations
 - Systematic variations
 - Random variations
 - Temperature variations
- Find the shortest path to improve the performance

Maze Routing

No Variations considered

Variations considered

Timing Analysis

- Find the longest delay path considering intra-die variations
- Large circuits with several logic levels
 - Gaussian distribution for the path delay
 - $\mu_P + 3\sigma_P$ is used to measure the timing-yield
- Our algorithm can also find the (path) candidates with longest delay

Timing Analysis

- ISCAS benchmarks
- Cell delays are not necessarily Gaussian
- 40X—1000X runtime improvement over Monte Carlo simulation
- Very little error compare to Monte Carlo method

Buffer Insertion

- Buffer insertion in 2-pin net can be formulated into shortest path problem
- With variations from both devices and interconnections, it should be formulated into statistical shortest path problem
- Our algorithm can solve this buffer insertion with variations consideration

Buffer Insertion

- Graph based approach
- Formulated as a shortest path problem

Conclusion

- Exact algorithm to solve the statistical shortest path problem
- \blacksquare Arbitrary graph, arbitrary cost function \varPhi
- Efficient implementation
- Can be used in varieties of applications in nanometer design