Coupling-Aware Dummy Metal Insertion for Lithography

- L. Deng (1), M.D.F. Wong (1), K. Chao (2), H. Xiang (3)
 - (1) University of Illinois at Urbana-Champaign
 - (2) Intel, Hillsboro, OR
 - (3) IBM T.J. Watson Research, Yorktown Heights, NY

Technology Scaling and Lithography

- Lithography system with 193nm wavelength will be used for future technology nodes
- The gap between feature size and wavelength increases
- Metal layer will have issues for future nodes as Poly layer have now

Resolution Enhancement Technology

- Optical Proximity Correction (OPC)
- Phase Shift Mask (PSM)
- Off-Axis Illumination (OAI) is widely used
 - Enhanced slope
 - Smaller edge placement error (EPE)

Off-Axis Illumination (OAI)

Pros

- Little lithography/mask cost overhead compared to OPC or PSM
- Good printability for dense features

Cons

- Complicated design rules
- High printing errors for isolated features with defocus
- Difficult "Forbidden Pitch" problem

Dummy Metals Improve Printability

- With OAI, some features can't be printed correctly even after OPC
- Obtain layout uniformily by inserting dummy metals
- Dummy metal insertion improves printability

Dummy Metals Add Coupling Capacitance

- Dummy metal insertion introduces additional metals on wafer
- Coupling capacitance is increased
- May degrade circuit performance

Printed image simulation from CalibreTM after dummy insertion

Two Types of Dummy for Lithography

- Printable Assist Feature (PAF)
 - Same width as metal wires
- Leaves metals on wafer
 - Higher coupling capacitance
 - Better printability
- Sub-Resolution Assist Feature (SRAF)
 - Small enough not to be printed
 - Several parallel SRAFs are needed to act as one PAF
 - Lower coupling capacitance
 - Less improvement on printability

Litho Cost and Coupling Cost

- Lithography cost
 - Complexity of assist features (PAF < SRAF)
 - Printability (EPE) (PAF < SRAF)
 - Reduce lithography cost ↔ Use more PAFs
- Coupling Cost
 - PAFs add coupling capacitance
 - SRAFs has no coupling overhead
 - Reduce coupling cost ↔ Use less PAFs

Coupling-Aware Dummy Insertion

- Trade off between coupling cost and lithography cost
- Compared to inserting PAF everywhere
 - Solution I: 30% less coupling
 - Solution II: 46% less coupling with 5% less SRAFs
- Insert PAFs and SRAFs to minimize lithography cost subject to coupling cost bound

Coupling-Aware Dummy Insertion

- Given a layout with metal wires routed, find a dummy metal insertion solution (using PAFs and SRAFs) that minimizes the total amount of PAFs inserted such that total coupling capacitance is less than a given bound
- We have designed an efficient algorithm to solve this problem optimally

Coupling Capacitance Model

$$C_X = C_0 \frac{x}{S^{\alpha}}$$

Post-Routing Partitioning

- Layout is partitioned into regions
- Each region has only top and bottom metal features
- Dummies will be inserted into the white spaces in the region
- PAFs and SRAFs give different coupling and lithography cost

Coupling-Lithography-Cost (CLC) Ratio

- Coupling-lithography-cost (CLC) ratio = Increase in coupling capacitance per unit increase in PAFs
- Dummy insertion with smaller CLC ratio is preferred

Basic Algorithm

- Goal: Insert maximum PAFs to keep coupling capacitance within given bound
- A simple greedy algorithm
 - Insert unit length PAF at a location which has minimum CLC ratio
 - 2. Update CLC ratios for all insertion locations
 - Repeat Step 1 until coupling capacitance bound is violated
- A much faster implementation is possible

Improved Algorithm

- Pick a region with minimum CLC ratio
- Insert a suitable number of tracks of PAFs into the selected region
- New regions formed and optimal insertion of PAFs is iteratively performed on the regions to minimize CLC ratio
- Algorithm stops when no more slack on coupling capacitance constraint

Dummy Insertion for One Region

- PAFs are inserted on tracks
- PAFs are inserted into the middle tracks first
- If coupling constraint is not reached, insert PAFs to fill all these tracks
- One region is divided by the inserted PAFs into two half regions

Dummy Insertion for Half Region

- Minimum CLC is achieved by inserting PAFs on the track nearest to the bottom
- If this track is filled, new half region with new minimum CLC will be formed

Optimal Dummy Insertion for a Region

- Given a region with m tracks
- Inserting p tracks of PAFs with identical length will minimize the CLC ratio
- p is a function of m

$$p \approx \left(\frac{\alpha}{(m+\beta)^{-\alpha} + (k+\beta)^{-\alpha}}\right)^{\frac{1}{\alpha+1}} - \beta + 0.5.$$

Demo

Experimental Results

Insertion result is shown by our optimal algorithm with linear complexity

Conclusion

- First work on coupling-aware dummy metal insertion for lithography
- Consider the tradeoff between mask complexity, printability and coupling capacitance
- An optimal algorithm is proposed to minimize lithography cost subject to a given coupling capacitance bound