# Fast Buffer Insertion for Yield Optimization Under Process Variations

Ruiming Chen and Hai Zhou Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208

01/24/2007

# Interconnect optimization by buffering

- Buffering (or buffer insertion) is the most effective method for interconnect optimization.
- Van Ginneken style dynamic programming algorithm:
  - Bottom-up merging and generation of candidate solutions
  - Top-down selection of the best solutions for delay minimization

#### **Process variations on wires**



[Nagaraj et al. DAC05]

- What impact will process variations have on buffering?
- How should we buffer under process variations?

# Outline

- Previous work
- Delay model of interconnects under process variations
- Problems in the pruning of inferior solutions
- Fast greedy selection of statistical solutions
- Experimental results
- Conclusions

## **Previous work**

- Deng and Wong [ICCAD05] considered buffering a path under process variations; found buffering based on nominal values is sufficient.
- Khandelwal et al. [ICCAD03] and Davoodi et al. [ICCD05] applied statistical pruning for tree buffering: expensive two-stage (solution generation then pruning) approach.
- Xiong et al. [ISPD06] proposed "transitive closure" based pruning: but the ordering property  $(P_r(B \ge A) \ge \eta \text{ or } P_r(A \ge B) \ge \eta$ ) is not ture unless  $\eta = 0.5$ .

# Our objective:

An efficient algorithm for buffering big trees with good results.

# Delay model of interconnects under process variations

- Elmore delay model
- R, C: Gaussian distributions of canonical form:

$$R = R_0 + \sum_{i=1}^n R_i \epsilon_i + r_{n+1}$$
$$C = C_0 + \sum_{i=1}^n C_i \epsilon_i + c_{n+1}$$

#### **Operations in buffer insertion**

- Add a wire  $(R_w, C_w)$ :  $D' = D + R_w(C + C_w/2)$  and  $C' = C + C_w$ .
- Insert a buffer  $(r_b, c_b)$ :  $D' = D + d_b + r_b C$  and  $C' = c_b$ .
- Merge two branches  $(D_1, C_1)$  and  $(D_2, C_2)$ :  $D' = \max(D_1, D_2)$ and  $C' = C_1 + C_2$ .
- With process variations:  $R_w, C_w, d_b, r_b$ ,  $c_b$ , etc. all become random variables.
- Both max and multiplication of random variables are needed.
- They are approximated back to the canonical forms by moment matching.

 $-D = \max(D1, D2) = D_0 + \sum_{i=1}^n D_i \epsilon_i + d_{n+1}.$  $-D = RC = D_0 + \sum_{i=1}^n D_i \epsilon_i + d_{n+1}.$ 

#### **Prune inferior solutions**

- $(D_1, C_1)$  and  $(D_2, C_2)$  are two solutions at the same node
- Without process variations, if  $D_1 \leq D_2$  and  $C_1 \leq C_2$ ,  $(D_2, C_2)$  is inferior, and can be deleted.
- With process variations, if

 $Pr(D_1 \le D_2, C_1 \le C_2) = 100\%,$ 

 $(D_2, C_2)$  is inferior, and can be deleted.

- Too few can be deleted using the 100% probability.
- Relax:  $Pr(D_1 \le D_2, C_1 \le C_2) \ge \eta$ , where  $\eta \in (0.5, 1)$ .

## Still too many solutions



- Still O(mn) statistical solutions after pruning, e.g. "r1", 34 deterministic solutions and 595 statistical solutions at a node close to the sinks.
- Even pruning down to O(m + n) solutions will take  $O(m^2n^2)$  running time, if pairs of merged solutions need to be compared (Khandelwal et al. ICCAD03). There is no guarantee that final solution will not be worse than deterministic approaches.

# Our idea

- Not comparing every pair...
- but selecting the "best" over each subset given by a deterministic approach.

## Which one: nominal or worst?

- Nominal case: all the R and C are fixed at their nominal values
- Worst case: all the R and C are fixed at their  $\mu + 3\sigma$  values
- Buffering the nominal case has higher yield in general:
  - Gaussian distribution has highest probability density at mean value.
  - For a wire, larger R will correspond to smaller C: the impact on Elmore delay may be canceled out.

|           | p1    | p2    | r1    | r2    | r3    | r4    | r5    |
|-----------|-------|-------|-------|-------|-------|-------|-------|
| Wor Yield | 63.31 | 73.37 | 49.00 | 62.14 | 69.20 | 75.62 | 71.20 |
| Nom Yield | 62.88 | 79.21 | 62.60 | 67.03 | 81.30 | 78.56 | 70.65 |

# General flow of our approach



## What kind of solutions can improve the delay?



- C involves only linear operations, while D involves non-linear multiplication and max operations.
- E.g., a solution (D,C) is inferior to  $(D_2,C_2)$  in deterministic situation, but is not inferior in statistical situation where  $(D_3,C_3)$  becomes inferior.
- We need to keep those statistical solutions that are inferior in deterministic approach but not inferior in statistical approach. These solutions have high probability to improve the delay.

#### Greedy selection of statistical solutions



• For each non-inferior deterministic solution  $(D_i, C_i)$ , we select a statistical solution (d, c) satisfying

 $\mu(c) \le C_i$ 

and  $\mu(d)$  is minimal.

## Greedy selection can improve delay

- Suppose  $(D_2, C_2)$  is the statistical representation of a noninferior deterministic solution.
- E.g., attach a wire  $(R_w, C_w)$ :  $D'_i = D_i + R_w(C_i + C_w/2)$  and  $C'_i = C_i + C_w$ .
- Suppose  $\mu(C_1) < \mu(C_2)$  and  $\mu(D_1) < \mu(D_2)$
- $\mu(C'_1) < \mu(C'_2)$ : the order of *C* does not change because of the linear operation.

## Greedy selection can improve delay

- $Pr(\mu(D'_1) \leq \mu(D'_2))$  is high when  $C_1$  is close to  $C_2$ . Often this case: the deterministic solutions are tightly surrounded by statistical solutions.
- Thus,  $Pr(D'_1 \leq D'_2)$  and  $Pr(C'_1 \leq C'_2)$  are high. If we replace  $(D_2, C_2)$  by  $(D_1, C_1)$ , the probability that the delay gets improved is high. This is the reason why the greedy selection can impove the delay.



# **Characteristics of testcases**

| Big trees |         |         |                    |  |  |  |  |
|-----------|---------|---------|--------------------|--|--|--|--|
| name      | # sinks | # nodes | # buffer locations |  |  |  |  |
| p1        | 269     | 537     | 268                |  |  |  |  |
| p2        | 603     | 1205    | 602                |  |  |  |  |
| r1        | 267     | 533     | 266                |  |  |  |  |
| r2        | 598     | 1195    | 597                |  |  |  |  |
| r3        | 862     | 1723    | 861                |  |  |  |  |
| r4        | 1903    | 3805    | 1902               |  |  |  |  |
| r5        | 3101    | 6201    | 3100               |  |  |  |  |

## **Experimental results**

| Nets | V-G(Nom) |           | Khandelwal |           | Xiong     | Ours |       |           | Gain  |
|------|----------|-----------|------------|-----------|-----------|------|-------|-----------|-------|
|      | # B      | Yield (%) | T (s)      | Yield (%) | Yield (%) | # B  | T (s) | Yield (%) | (%)   |
| p1   | 162      | 62.88     | N/A        | N/A       | 63.88     | 158  | 10.22 | 75.28     | 12.40 |
| p2   | 268      | 79.21     | N/A        | N/A       | 73.60     | 268  | 27.92 | 94.37     | 15.16 |
| r1   | 166      | 62.60     | 198.75     | 77.81     | 59.10     | 169  | 5.26  | 79.38     | 16.78 |
| r2   | 358      | 67.03     | N/A        | N/A       | 62.90     | 363  | 17.53 | 79.49     | 12.46 |
| r3   | 517      | 81.30     | N/A        | N/A       | 79.30     | 523  | 14.20 | 92.48     | 11.18 |
| r4   | 1187     | 78.56     | N/A        | N/A       | 79.26     | 1192 | 52.67 | 87.26     | 8.70  |
| r5   | 1893     | 70.65     | N/A        | N/A       | 71.03     | 1918 | 76.63 | 80.36     | 9.71  |
| avg  |          |           |            |           |           |      |       |           | 12.34 |

"N/A" means that the testcase cannot be finished because of the memory

limit (2GB) or time limit (3 hours).

# **Experimental results**

| Nets | V-G(Nom) |           | Khandelwal |           | Xiong     | Ours |       |           | Gain  |
|------|----------|-----------|------------|-----------|-----------|------|-------|-----------|-------|
|      | # B      | Yield (%) | T (s)      | Yield (%) | Yield (%) | # B  | T (s) | Yield (%) | (%)   |
| p1   | 162      | 62.88     | N/A        | N/A       | 63.88     | 158  | 10.22 | 75.28     | 12.40 |
| p2   | 268      | 79.21     | N/A        | N/A       | 73.60     | 268  | 27.92 | 94.37     | 15.16 |
| r1   | 166      | 62.60     | 198.75     | 77.81     | 59.10     | 169  | 5.26  | 79.38     | 16.78 |
| r2   | 358      | 67.03     | N/A        | N/A       | 62.90     | 363  | 17.53 | 79.49     | 12.46 |
| r3   | 517      | 81.30     | N/A        | N/A       | 79.30     | 523  | 14.20 | 92.48     | 11.18 |
| r4   | 1187     | 78.56     | N/A        | N/A       | 79.26     | 1192 | 52.67 | 87.26     | 8.70  |
| r5   | 1893     | 70.65     | N/A        | N/A       | 71.03     | 1918 | 76.63 | 80.36     | 9.71  |
| avg  |          |           |            |           |           |      |       |           | 12.34 |

No loss on the quality of solutions for "r1"



Our approach has higher yield in the whole range.

# Conclusions

- Process variations have impacts on buffer insertion.
- Our experiments show that buffering by nominal case get relatively good results.
- Proposed a statistical optimization methodology that utilizes a good deterministic approach as a guidance for efficient statistical solution selection.
- Designed an efficient and effective buffering technique considering process variations
  - Greedy selection of statistical solutions.
  - Local refinement based on deterministic solutions.

# Thank you