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Interconnect optimization by buffering

• Buffering (or buffer insertion) is the most effective method

for interconnect optimization.

• Van Ginneken style dynamic programming algorithm:

– Bottom-up merging and generation of candidate solutions

– Top-down selection of the best solutions for delay mini-

mization
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Process variations on wires

[Nagaraj et al. DAC05]
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• What impact will process variations have on buffering?

• How should we buffer under process variations?
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Previous work

• Deng and Wong [ICCAD05] considered buffering a path un-

der process variations; found buffering based on nominal val-

ues is sufficient.

• Khandelwal et al. [ICCAD03] and Davoodi et al. [ICCD05]

applied statistical pruning for tree buffering: expensive two-

stage (solution generation then pruning) approach.

• Xiong et al. [ISPD06] proposed “transitive closure” based

pruning: but the ordering property (Pr(B ≥ A) ≥ η or Pr(A ≥
B) ≥ η ) is not ture unless η = 0.5.
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Our objective:

An efficient algorithm for buffering big trees with good results.
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Delay model of interconnects under process

variations

• Elmore delay model

• R, C: Gaussian distributions of canonical form:

R = R0 +
n∑

i=1

Riεi + rn+1

C = C0 +
n∑

i=1

Ciεi + cn+1
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Operations in buffer insertion

• Add a wire (Rw, Cw): D′ = D + Rw(C + Cw/2) and C′ =

C + Cw.

• Insert a buffer (rb, cb): D′ = D + db + rbC and C′ = cb.

• Merge two branches (D1, C1) and (D2, C2): D′ = max(D1, D2)

and C′ = C1 + C2.

• With process variations: Rw, Cw, db, rb, cb, etc. all become

random variables.

• Both max and multiplication of random variables are needed.

• They are approximated back to the canonical forms by mo-

ment matching.
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– D = max(D1, D2) = D0 +
∑n

i=1 Diεi + dn+1.

– D = RC = D0 +
∑n

i=1 Diεi + dn+1.



Prune inferior solutions

• (D1, C1) and (D2, C2) are two solutions at the same node

• Without process variations, if D1 ≤ D2 and C1 ≤ C2, (D2, C2)

is inferior, and can be deleted.

• With process variations, if

Pr(D1 ≤ D2, C1 ≤ C2) = 100%,

(D2, C2) is inferior, and can be deleted.

– Too few can be deleted using the 100% probability.

– Relax: Pr(D1 ≤ D2, C1 ≤ C2) ≥ η, where η ∈ (0.5,1).
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Still too many solutions

A B

C

m solutions n solutions
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m solutions n solutions
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A B

C

m solutions n solutions

mn solutions

w/o variations

w/ variations

m+n solutions

>> m+n solutions

PRUNEMERGE

• Still O(mn) statistical solutions after pruning, e.g. “r1”, 34 deterministic
solutions and 595 statistical solutions at a node close to the sinks.

• Even pruning down to O(m + n) solutions will take O(m2n2) running
time, if pairs of merged solutions need to be compared (Khandelwal et
al. ICCAD03). There is no guarantee that final solution will not be worse
than deterministic approaches.
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Our idea

• Not comparing every pair...

• but selecting the “best” over each subset given by a deter-

ministic approach.
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Which one: nominal or worst?

• Nominal case: all the R and C are fixed at their nominal

values

• Worst case: all the R and C are fixed at their µ + 3σ values

• Buffering the nominal case has higher yield in general:

– Gaussian distribution has highest probability density at

mean value.

– For a wire, larger R will correspond to smaller C: the

impact on Elmore delay may be canceled out.
p1 p2 r1 r2 r3 r4 r5

Wor Yield 63.31 73.37 49.00 62.14 69.20 75.62 71.20
Nom Yield 62.88 79.21 62.60 67.03 81.30 78.56 70.65

12



General flow of our approach

Deterministic Buffering

Statistical Buffering by 
Greedy Selection of 
Statistical Solutions

Deterministic Solutions

Nominal setting

Statistical setting
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What kind of solutions can improve the delay?
D1 > D2 > D3 > D4 >... > Dn

C1 < C2 < C3 < C4 <... < Cn

Actual positiondeterministic position
inferior, pruned

D1’ > D2’> D3’ > D4’ >... > Dn’

deterministic solutions:

statistical solutions:
corresponding

(mean)

(mean)

• C involves only linear operations, while D involves non-linear multiplica-
tion and max operations.

• E.g., a solution (D, C) is inferior to (D2, C2) in deterministic situation,
but is not inferior in statistical situation where (D3, C3) becomes inferior.

• We need to keep those statistical solutions that are inferior in determin-
istic approach but not inferior in statistical approach. These solutions
have high probability to improve the delay.
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Greedy selection of statistical solutions

A B

C

(D1, C1)
(D2, C2)
(D3, C3)
(D4, C4)

(Dk, Ck)

.........

Deterministic

Ci<Ci+1

(d1, c1)
(d2, c2)
(d3, c3)
(d4, c4)

(dmn, cmn)

.........

Statistical Sols

(D1
’, C1

’)

.........

Statistical

(D2
’, C2

’)
(D3

’, C3
’)

(D4
’, C4

’)

(Dk
’, Ck

’)

u(Ci
’)=Ci

C: linear operation (add)
D: non-linear operation (max)

Before Pruning

Statistical Sols

After Pruning

m solutions n solutions

m+n

m*n m+n

u(di
’)<=u(Di

’) and u(ci
’)<=u(Ci

’)

The delay is expecting to be smaller.

(d1
’, c1

’)

.........

(d2
’, c2

’)
(d3

’, c3
’)

(d4
’, c4

’)

(dm+n
’, cm+n

’)

Efficient

• For each non-inferior deterministic solution (Di, Ci), we select

a statistical solution (d, c) satisfying

µ(c) ≤ Ci

and µ(d) is minimal.
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Greedy selection can improve delay

• Suppose (D2, C2) is the statistical representation of a non-

inferior deterministic solution.

• E.g., attach a wire (Rw, Cw): D′
i = Di + Rw(Ci + Cw/2) and

C′
i = Ci + Cw.

• Suppose µ(C1) < µ(C2) and µ(D1) < µ(D2)

• µ(C′
1) < µ(C′

2): the order of C does not change because of

the linear operation.
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Greedy selection can improve delay

• Pr(µ(D′
1) ≤ µ(D′

2)) is high when C1 is close to C2. Often

this case: the deterministic solutions are tightly surrounded

by statistical solutions.

• Thus, Pr(D′
1 ≤ D′

2) and Pr(C′
1 ≤ C′

2) are high. If we replace

(D2, C2) by (D1, C1), the probability that the delay gets im-

proved is high. This is the reason why the greedy selection

can impove the delay.
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Characteristics of testcases

Big trees
name # sinks # nodes # buffer locations

p1 269 537 268
p2 603 1205 602
r1 267 533 266
r2 598 1195 597
r3 862 1723 861
r4 1903 3805 1902
r5 3101 6201 3100
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Experimental results

Nets V-G(Nom) Khandelwal Xiong Ours Gain
# B Yield (%) T (s) Yield (%) Yield (%) # B T (s) Yield (%) (%)

p1 162 62.88 N/A N/A 63.88 158 10.22 75.28 12.40
p2 268 79.21 N/A N/A 73.60 268 27.92 94.37 15.16
r1 166 62.60 198.75 77.81 59.10 169 5.26 79.38 16.78
r2 358 67.03 N/A N/A 62.90 363 17.53 79.49 12.46
r3 517 81.30 N/A N/A 79.30 523 14.20 92.48 11.18
r4 1187 78.56 N/A N/A 79.26 1192 52.67 87.26 8.70
r5 1893 70.65 N/A N/A 71.03 1918 76.63 80.36 9.71

avg 12.34

“N/A” means that the testcase cannot be finished because of the memory

limit (2GB) or time limit (3 hours).
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Experimental results

Nets V-G(Nom) Khandelwal Xiong Ours Gain
# B Yield (%) T (s) Yield (%) Yield (%) # B T (s) Yield (%) (%)

p1 162 62.88 N/A N/A 63.88 158 10.22 75.28 12.40
p2 268 79.21 N/A N/A 73.60 268 27.92 94.37 15.16
r1 166 62.60 198.75 77.81 59.10 169 5.26 79.38 16.78
r2 358 67.03 N/A N/A 62.90 363 17.53 79.49 12.46
r3 517 81.30 N/A N/A 79.30 523 14.20 92.48 11.18
r4 1187 78.56 N/A N/A 79.26 1192 52.67 87.26 8.70
r5 1893 70.65 N/A N/A 71.03 1918 76.63 80.36 9.71

avg 12.34

No loss on the quality of solutions for “r1”
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CDFs for “r2”
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Our approach has higher yield in the whole range.
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Conclusions

• Process variations have impacts on buffer insertion.

• Our experiments show that buffering by nominal case get

relatively good results.

• Proposed a statistical optimization methodology that utilizes

a good deterministic approach as a guidance for efficient

statistical solution selection.

• Designed an efficient and effective buffering technique con-

sidering process variations

– Greedy selection of statistical solutions.

– Local refinement based on deterministic solutions.
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Thank you
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