

Software Performance Estimation in MPSoC Design

Marcio Seiji Oyamada^{1,2}, Flávio Rech Wagner¹, Wander Cesario², Marius Bonaciu², Ahmed Jerraya²

UFRGS¹ Instituto de Informática Porto Alegre, Brazil http://www.inf.ufrgs.br/~lse TIMA Laboratory² SLS Group Grenoble, France http://tima.imag.fr/sls

Motivation

- Very large design space of embedded MPSoCs
 - High-level performance estimation tools are required
 - Must be combined with fast design exploration strategies
- Embedded systems are software-dominated
 - Evaluation of processor performance under various workloads
 - e.g. exploring the allocation of tasks to various processors

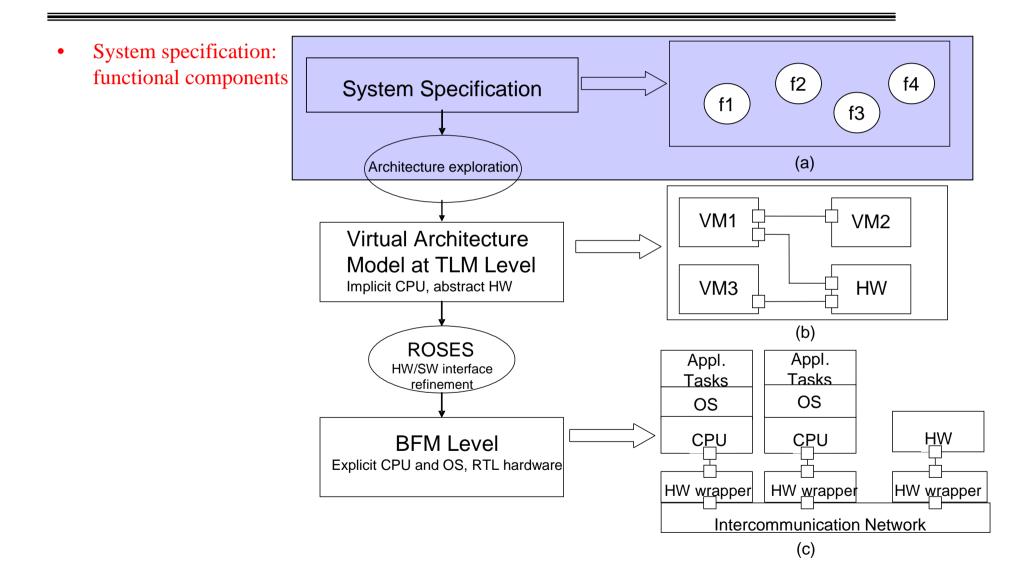
Motivation

- Support for SW performance estimation and analysis at different abstraction levels
- At specification level
 - Estimation must be fast, for fast design space exploration
 - Some inaccuracy is accepted
- At RT level
 - Accurate performance analysis after the architecture definition
 - Evaluation of OS and communication overhead in an MPSoC environment

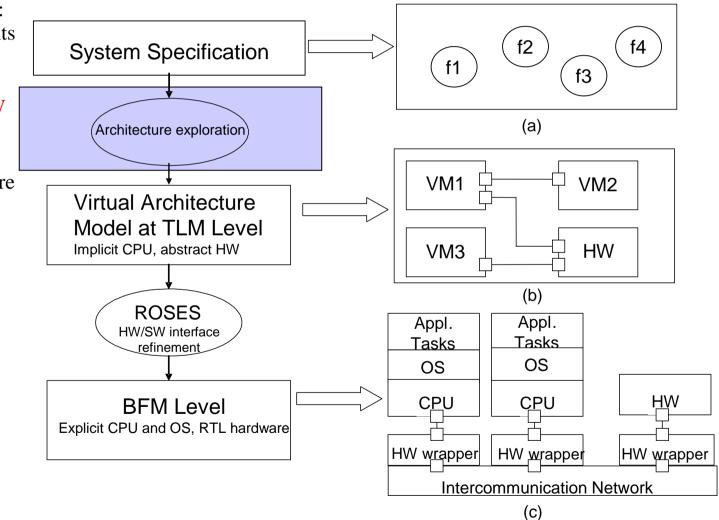
Motivation

- For accurate performance analysis and identification of bottlenecks, simulation models must be instrumented with appropriate profiling resources
- These models must be generated according to virtual prototypes coming from the synthesis flow
- However, there is a poor integration between the synthesis flow and the performance evaluation flow
 - Manual configurations of performance models are often required

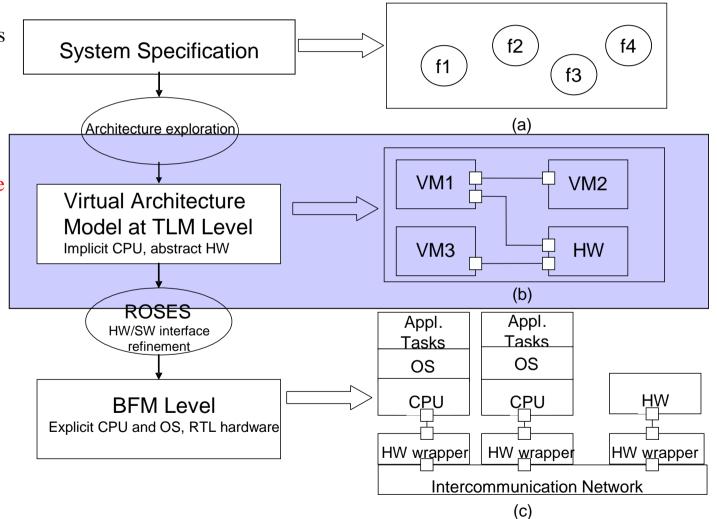
Goals of this work

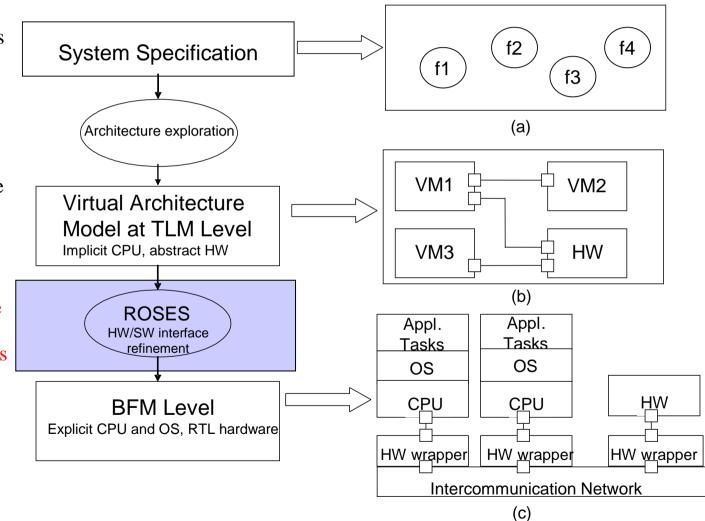

- Integrated methodology for software performance analysis at different abstraction levels
 - Different trade-offs between speed and accuracy of the performance analysis
 - High-level performance evaluation for fast design space exploration
- Performance evaluation flow tightly coupled with an MPSoC synthesis flow

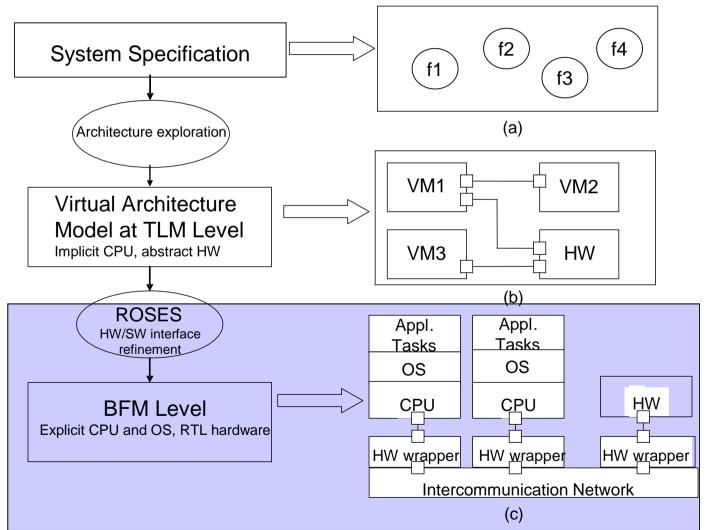
Outline


- 1. MPSoC design flow
- 2. Software performance estimation methodology
- 3. Neural network-based performance estimation
- 4. Virtual prototype-based performance estimation
- 5. Case study: MPEG4 encoder

Outline

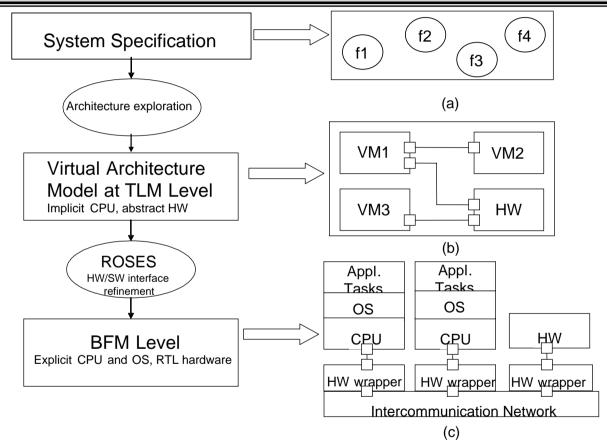

- **1. MPSoC design flow**
- 2. Software performance estimation methodology
- 3. Neural network-based performance estimation
- 4. Virtual prototype-based performance estimation
- 5. Case study: MPEG4 encoder


- System specification: functional components
- Architecture exploration maps the functionalities in HW and SW components
- Virtual architecture: hardware and software components with abstract communication channels

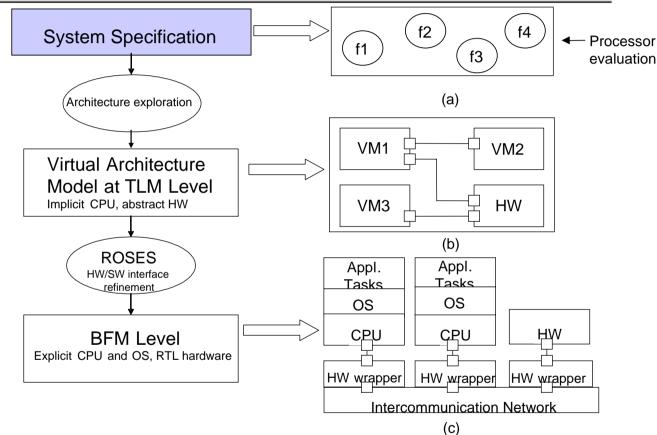

- System specification: functional components
- Architecture exploration maps the functionalities in HW and SW components
- Virtual architecture: hardware and software components with abstract communication channels

- System specification: functional components
- Architecture exploration maps the functionalities in HW and SW components
- Virtual architecture: hardware and software components with abstract communication channels
- Abstract interfaces are refined in hardware and software interfaces
- BFM Level:
 - CPU
 - Interconnection network and adapters

- System specification: functional components
- Architecture exploration maps the functionalities in HW and SW components
- Virtual architecture: hardware and software components with abstract communication channels
- Abstract interfaces are refined in hardware and software interfaces
- BFM level:
 - CPU
 - Interconnection network and adapters

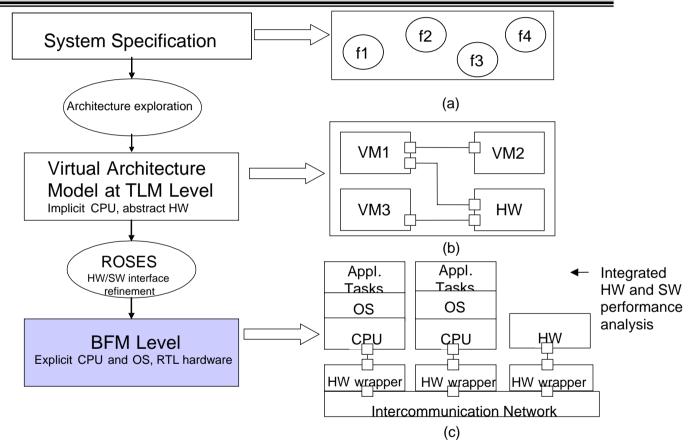

Outline

1. MPSoC design flow


2. Software performance estimation methodology

- 3. Neural network-based performance estimation
- 4. Virtual prototype-based performance estimation
- 5. Case study: MPEG4 encoder

Software Performance Estimation – Integrated with Design Flow



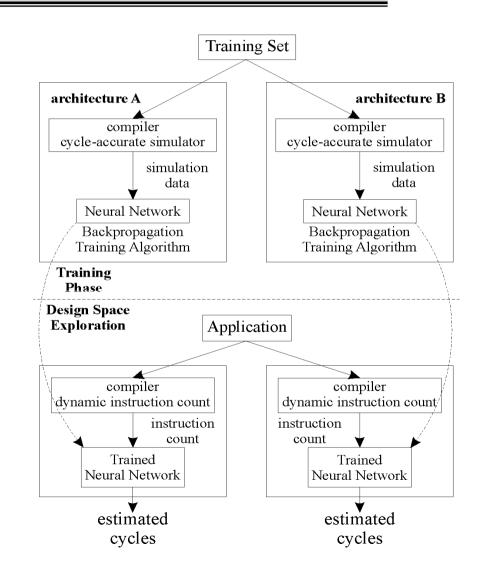
Software Performance Estimation – Processor Evaluation

- SW performance estimation
 - Goal: fast processor evaluation under a given workload
 - Analytical-based, using neural networks
 - High-level, thus some inaccuracies are allowed

Software Performance Estimation – Virtual Prototype

- SW performance estimation using a virtual prototype
 - Simulation-based
 - Detailed analysis of interaction between hardware and software components

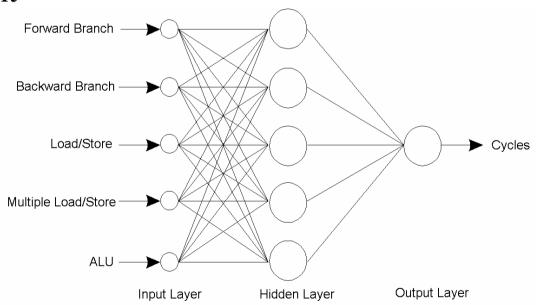
Outline


- 1. MPSoC design flow
- 2. Performance estimation methodology

3. Neural network-based performance estimation

- 4. Virtual prototype-based performance estimation
- 5. Case study: MPEG4 encoder

Neural Network Performance Estimation


- Why neural networks?
 - Non-linear prediction state-ofthe-art processors
 - Very fast estimation
- Training phase
 - Set of benchmarks
 - Cycle-accurate simulation: MaxSim ARM9
 - Neural network training and simulation: Matlab
- Utilization phase
 - Dynamic instruction count: instruction-accurate simulator

Neural Network Performance Estimation

• Neural network configuration

- Input: instruction count
- Output: # of cycles
- Input layer and
 output layer: *linear* transfer function
- Hidden layer: *tansig* transfer function

• Back-propagation training algorithm

NN Estimation Results for ARM9

- Benchmark set composed by 32 applications and algorithms
 - Total of 41 samples (some benchmarks were executed with different inputs)
 - Different domains
 - Numerical
 - Sort and search algorithms
 - Data processing
 - Synthetic algorithms
 - 20 benchmarks used as training set

	Max underestim	Max overestim	Mean error	Std deviation
All benchmarks	-35.59%	29.75%	9.05%	8.90%
Training set	-18.30%	29.75%	7.62%	7.97%
Test set	-35.59%	11.58%	10.08%	9.54%

NN Estimation Results for ARM9

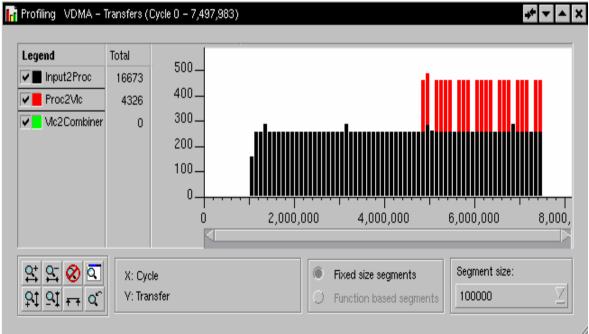
- Benchmark set composed by 32 applications and algorithms
 - Total of 41 samples (some benchmarks were executed with different inputs)
 - Different domains
 - Numerical
 - Sort and search algorithms
 - Data processing
 - Synthetic algorithms
 - 20 benchmarks used as training set

	Max underestim	Max overestim	Mean error	Std deviation
All benchmarks	-35.59%	29.75%	9.05%	8.90%
Training set	-18.30%	29.75%	7.62%	7.97%
Test set	-35.59%	11.58%	10.08%	9.54%

Outline

- 1. MPSoC design flow
- 2. Performance estimation methodology
- 3. Neural network-based performance estimation
- 4. Virtual prototype-based performance estimation
- 5. Case study: MPEG4 encoder

Virtual Prototype-based Performance Estimation

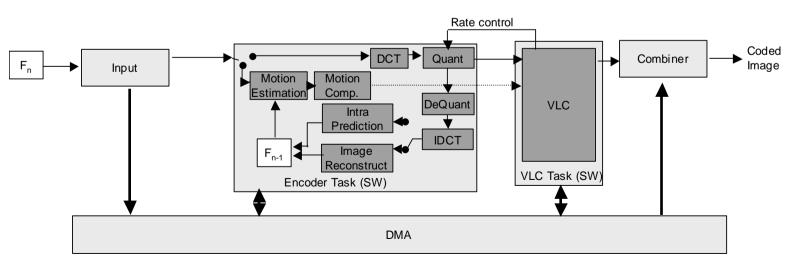

- Virtual prototype for the MaxSim environment, for performance evaluation, is generated from the architecture model
- Processor model: cycle-accurate model provided in the MaxSim library
- Other HW components are provided in SystemC
- Hardware and software simulators run in synchronized way
 - Detection of problems arising from communication between HW and SW components

Virtual Prototype-based Performance Estimation

- Software analysis support by MaxSim
 - Timeline charts for evaluating application functions
 - Cache performance
- Analysis of hardware components
 - Custom profiling of user-defined components

Virtual Prototype – Custom Profiling

- Using the profiling interface, custom analysis is implemented in user-defined components
- Example: Analysis of transfers managed by the DMA component in the MPEG4 case study

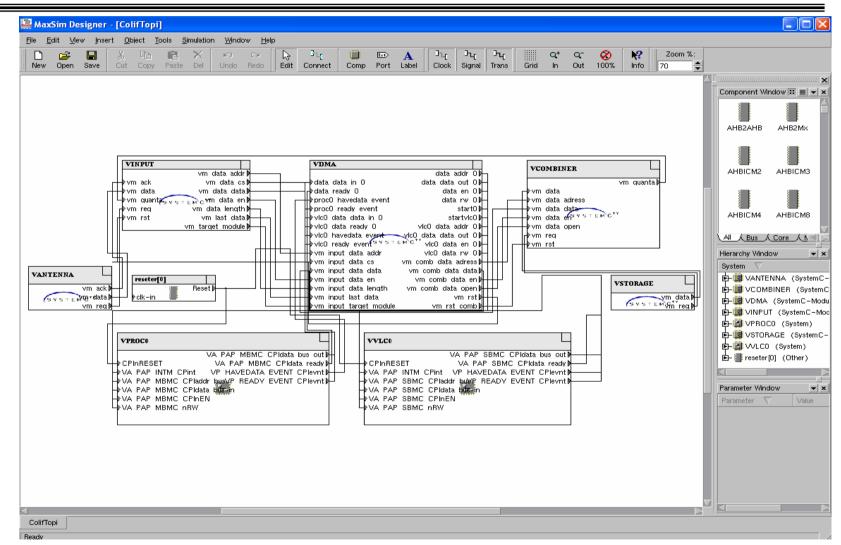


Outline

- 1. MPSoC design flow
- 2. Performance estimation methodology
- 3. Neural network-based performance estimation
- 4. Virtual prototype-based performance estimation
- 5. Case study: MPEG4 encoder

MPEG4 Encoder

- Two software tasks
 - Encoder Task: core algorithms
 - VLC Task: compression algorithm
- Hardware components
 - DMA, INPUT, COMBINER



MPEG4 Encoder

Software Performance Estimation

- At specification level
 - NN estimator used to estimate the software performance
 - Choice of several ARM processor models
 - ARM9 has been selected by using estimation results
- At BFM level
 - Virtual prototype used for detailed SW performance estimation
 - Simulation model uses ARM MaxSim tool
 - CPU: cycle-accurate model
 - Hardware components: RTL models described in SystemC and instrumented with MaxSim profiling interface

Virtual Prototype: MaxSim model

MPEG4 Encoder NN Estimation Errors

	NN estimation	VP: cycle-accurate	Estimation Error
Encoder Task	122,910 cycles	137,000 cycles	10%
VLC Task	21,613 cycles	26,179 cycles	17%

- Estimation errors have two sources
 - Intrinsic error of the neural network method
 - Communication and OS overheads are neglected
- Communication overhead
 - The NN estimator was trained for a monoprocessor architecture
 - DMA provides point-to-point communication without contention
 - In architectures with shared resources (memories and buses), the contentions could result in a larger error of the NN estimator

NN Estimation Speed-up

- NN network costs
 - NN trained just once, in about 1.5 hours
 - NN utilization
 - Dynamic instruction count using instruction-accurate simulators (much faster than cycle-accurate simulators)
 - NN execution: very fast, just a matrix multiplication
- Virtual prototype: simulation of cycle-accurate CPU + RTL hardware components

Benchmark	Cycle-accurate execution time	Estimation time	Speed-up	Estimation error (%)
Matrix sum	9 sec	0.39 sec	23	3%
LMS filter	12 sec	0.52 sec	23	1%
MPEG encoder	600 sec	17 sec	35	17%

Conclusions

- Integrated MPSoC design and estimation methodology
 - Performance data support the design decisions through the design flow
- Software performance estimation
 - At specification level: processor evaluation using a neural network estimator
 - High-level
 - Fast
 - Virtual prototype
 - After the HW and SW interface refinement
 - Cycle-accurate processor model with instrumented RTL hardware modules
 - Detailed performance analysis
- Offers an interesting trade-off between estimation speed and accuracy
- Case study: MPEG4 encoder
 - Neural network estimation errors up to 17%

Software Performance Estimation in MPSoC Design

Thanks Questions?

Contact {marcio, flavio}@inf.ufrgs.br {ahmed.jerraya, marius.bonaciu}@imag.fr