
Efficient OpenMP Implementation and Translation
For Multiprocessor System-On-Chip

without Using OS

Woo-Chul Jeun and Soonhoi Ha
Seoul National University, Korea

2007.01.24
wcjeun@iris.snu.ac.kr

2 / 31

Contents

Background

OpenMP implementation for MPSoC configurations

Our OpenMP implementation and translation for a
target platform

Conclusions & Future directions

Background

4 / 31

MPSoC
(Multiprocessor System-on-Chip)

Attractive platform for computation-intensive
applications such as multimedia encoder/decoder

Can have various architectures according to target
applications
• Memory: Shared, Distributed, and Hybrid
• OS: SMP(symmetric multiprocessor) kernel Linux, small operating

systems, and no operating system

No standard parallel programming model for MPSoC

Not sufficient studies on various MPSoC architectures

5 / 31

Parallel Programming Models
Message-passing Shared-address-space

Memory

Comm.

Distributed memory
(private memory)

Shared memory
(same address space)

• Manual optimization (MPI) vs. Easy programming (OpenMP)

Explicit message-passing Memory access

De facto
Standard

MPI (1994)
(message-passing interface) OpenMP (1998)

Performance
Optimize data distribution,

data transfer, and
synchronization manually

Complicate issues
depend on

OpenMP implementation

Programming
easiness Difficult Easy

6 / 31

OpenMP Overview
Specification standard to represent
programmer’s intension with compiler
directives (C/C++ and Fortran)
OpenMP is an attractive parallel programming
model for MPSoC because of easy programming.
Programmers can write an OpenMP program by
inserting OpenMP directives into a serial
program.

#pragma omp parallel for
for(i = 0 ; i < 1000 ; i++) {

data[i] = 0;
}

7 / 31

OpenMP execution model : fork/join

Master thread

fork

join

Child thread

for(i=0;i<500;i++
)

Processor 0 Processor 1

for(i=500;i<1000;i++)

#pragma omp parallel for
for(i = 0 ; i < 1000 ; i++) {

data[i] = 0;
}

All threads divide and execute its own
computation workload.

8 / 31

OpenMP programming environment
OpenMP does not define how to implement
OpenMP directives on a parallel processing
platform.

OpenMP runtime system
: OpenMP directive implementation with libraries
on a target platform

OpenMP translator (for C language)
: converts an OpenMP program into the codes (C
codes) using the OpenMP runtime system

9 / 31

Hybrid execution model
Separating parallel programming model from
execution model

Application programmers use OpenMP.

OpenMP runtime system can use hybrid
execution model of message passing model
and shared address space model for the
performance improvement.

Easy programming and High performance

10 / 31

Motivation
OpenMP runtime system depends on a target
platform.

OpenMP translator is customized to the
OpenMP runtime system.

To get high performance on various platforms,
it is necessary to research on efficient OpenMP
runtime system and OpenMP translator for
each target platform.

11 / 31

Terminologies
Barrier synchronization
• Every processor (or thread) waits until all processors (or

threads) arrive at a synchronization point.

Reduction operation
• integrates operations of all processors (or threads)

into one operation.

sum+= (a+b+c);

sum+=a; sum+=b; sum+=c;

Processor 0 Processor 1 Processor 2

Sum: 0 Sum: 0 Sum: 0

Sum: a+b+c Sum: a+b+c Sum: a+b+c

Reduction operation

OpenMP implementation
on MPSoC configurations

13 / 31

Possible OpenMP implementation on
MPSoC configurations

Distributed memory Shared memory

OS with
thread library

Thread programming
+

SDSM : fault handler

Thread programming
+

Shared memory
(Yoshihiko et al.)

Without OS

Processor programming
+

SDSM : message passing

Processor programming
+

Shared memory
(Feng Liu et al., Ours)

SDSM (software distributed shared memory)
vs. Shared memory
Thread programming vs. Processor programming

14 / 31

Shared memory
+ OS with thread library

Distributed memory Shared memory

OS with
thread library

Thread programming+
SDSM : fault handler

Thread programming+
Shared memory

Without OS Processor programming+
SDSM : message passing

Processor programming+
Shared memory

No need for memory consistency protocol
Similar to thread programming in a SMP machine
(Ex. dual processor PC)
Yoshihiko Hotta et al., [EWOMP’2004]
• SMP(symmetric multiprocessor) kernel Linux

and POSIX thread library
• Similar to OpenMP implementation and translation in a SMP

machine (dual processor PC)
• They focused on power optimization

15 / 31

Shared memory
+ No OS

Distributed memory Shared memory

OS with
thread library

Thread programming+
SDSM : fault handler

Thread programming+
Shared memory

Without OS Processor programming+
SDSM : message passing

Processor programming+
Shared memory

No need for memory consistency protocol
Make processors run a program in parallel
(load and initiate processors)
Feng Liu et al., [WOMPAT’03, ICPP’2003]
• No operating system
• Their own OpenMP directive extension for DSP
• OpenMP directive extension for special hardware on CT3400
• Harmful barrier synchronization implementation

Our OpenMP implementation and
translation on a target
multiprocessor system-on-chip
platform

17 / 31

CT3400 Architecture
(Cradle Technologies, Inc.)

semaphores

Instruction
cache

(32KB)

Global bus
interface

On-chip
memory
(64KB)

Off-chip
memory

(256MB)

Local data bus

Local instruction bus

Global bus

(chip)

Global
semaphores

RISC-like
processor

RISC-like
processor

RISC-like
processor

RISC-like
processor

• 230MHz processor, hardware semaphores (32 local, 64 global)

• Shared memory; No operating system and no thread library

18 / 31

Initialization

int main(…)
{
}

int main(…) {
initializer(…);
app_main(…);

}

int app_main(…) {
}

New main on master node

OpenMP translator extracts original main
function to a function. (app_main())
Make new main function call original main
Initialization procedure loads program codes on
other processors and initiates them before
application starts (initializer())

Original main

OpenMP translation

19 / 31

Parallelization

#pragma omp parallel for

for(i=0;i<1000;i++){

data[i]=0;

}

parallelize(…, parallel_region_0)
New mainParallel region

OpenMP translator extracts a parallel region to a
function
All processors execute the function. (cf. thread)
Master processor executes serial region and
other processors wait until master processor
arrives at a parallel region.

OpenMP translation

void parallel_region_0(…) {

for(i=start;i<end;i++){

data[i]=0;

}

20 / 31

Translation of global shared variables

‘cragcc’ C compiler on CT3400 can process
global variables efficiently
OpenMP translator can translate global shared
variables with two memory allocation methods.
Static allocation
• int data[100]; , global data area (0%~31% better)
• OpenMP translator can inform the OpenMP runtime system

that the variables are in global data area.

Dynamic allocation
• int *data; data = allocate_local(…); , heap area
• OpenMP runtime system cannot know whether the variables

are global variables.

21 / 31

24*24 Matrix multiplication (cycles)

2 4

Parallel (hand-written)

OpenMP, Dynamic

N/A N/A

1,827,537 914,127

2,622,901 1,320,474

1,845,050 933,549OpenMP, Static

1

3,664,513

3,653,761

5,221,225

3,674,336

Serial

Processors

• Static memory allocation is 31% better than
dynamic memory allocation on CT3400.

• On the cycle-accurate simulator “Inspector” provided by Cradle
technologies, Inc.

22 / 31

Reduction (using temporary
variable)

Uses a temporary variable. (temp_var)
Similar to thread programming
Each processor updates the temporary variable
with semaphore.
All operations are serialized.

reduce(&_t_red, …); _t_red

reduce(&_t_red, …); _t_red
4KB

char temp_var[4096]

semaphore
reduce(&_t_red, …); _t_red

reduce(&_t_red, …); _t_red

reduce_0(…);

barrier

23 / 31

Reduction
(using temporary buffer array)

Uses a temporary buffer array (buffer).
Each processor updates its own element of the
array without semaphore.
All operations can be executed in parallel.

reduce(&_t_red, …); _t_red

reduce(&_t_red, …); _t_red

4KB

char buffer[4][4096]
memcpy

memcpy

reduce(&_t_red, …); _t_red

reduce(&_t_red, …); _t_red

memcpy

memcpy

4KB

4KB

4KB

reduce_0(…);

barrier

24 / 31

EPCC OpenMP micro-benchmark
(cycles)

2 4

Reduction,
temporary variable

1

Reduction,
temporary buffer array

8,790 14,028

7,805 12,631

1,713

1,713

Processors

• On the cycle-accurate simulator “Inspector” provided by Cradle
technologies, Inc.

• Temporary buffer array method is 10% better than
temporary variable method on CT3400.

25 / 31

Previous harmful barrier synchronization
implementation (example error case)

1 semaphore_lock(Sem.p);
2 done_pe++;
3 semaphore_unlock(Sem.p);
4 while(done_pe < PES)
5 _pe_delay(1);
6 if(my_peid = = 0)
7 done_pe = 0;

Processor 0 Processor 1

Busy waiting
(done_pe : 1 , PES : 2)

PES (Number of processors) : 2
done_pe (counter variable for synchronization)
my_peid (processor ID)
Processor 0 increases ‘done_pe’ to 1 with
semaphore and does busy waiting.

26 / 31

Previous harmful barrier synchronization
implementation (example error case)

1 semaphore_lock(Sem.p);
2 done_pe++;
3 semaphore_unlock(Sem.p);
4 while(done_pe < PES)
5 _pe_delay(1);
6 if(my_peid = = 0)
7 done_pe = 0;

Processor 0 Processor 1

Busy waiting
(done_pe : 2 , PES : 2)

(done_pe : 2 , PES : 2)

Processor 1 increases the counter.
Processor 0 can exit the busy waiting loop.

27 / 31

Previous harmful barrier synchronization
implementation (example error case)

1 semaphore_lock(Sem.p);
2 done_pe++;
3 semaphore_unlock(Sem.p);
4 while(done_pe < PES)
5 _pe_delay(1);
6 if(my_peid = = 0)
7 done_pe = 0;

Processor 0 Processor 1

(done_pe : 0 , PES : 2)

(done_pe : 0 , PES : 2)

Processor 0 initializes the counter variable
before processor 1 checks the value of the
counter variable.

28 / 31

Previous harmful barrier synchronization
implementation (example error case)

1 semaphore_lock(Sem.p);
2 done_pe++;
3 semaphore_unlock(Sem.p);
4 while(done_pe < PES)
5 _pe_delay(1);
6 if(my_peid = = 0)
7 done_pe = 0;

Processor 0 Processor 1

(done_pe : 0 , PES : 2)

Busy waiting (wrong!!)
(done_pe : 0 , PES : 2)

Processor 1 cannot exit the loop and it fails for
synchronization (wrong)
Wrong assumption of this implementation
: last processor is always processor 0 and it
initializes the counter of current barrier

29 / 31

Our barrier implementation

Introduce a phase variable and toggle phase of
barrier to discriminate consequent barriers
Initialize the counter of next barrier

1 semaphore_lock(Sem.p);
2 done_pe++;
3 semaphore_unlock(Sem.p);
4 while(done_pe < PES)
5 _pe_delay(1);
6 if(my_peid = = 0)
7 done_pe = 0;

1 semaphore_lock(Sem.p);
2 phase = (phase + 1) % 2;
3 if(done_pe[phase] + 1 = = PES)
4 done_pe[(phase + 1) % 2] = 0;
5 done_pe[phase]++;
6 semaphore_unlock(Sem.p);
7 while(done_pe[phase] < PES)
8 _pe_delay(1);

30 / 31

Our barrier implementation

1 semaphore_lock(Sem.p);
2 phase = (phase + 1) % 2;
3 if(done_pe[phase] + 1 = = PES)
4 done_pe[(phase + 1) % 2] = 0;
5 done_pe[phase]++;
6 semaphore_unlock(Sem.p);
7 while(done_pe[phase] < PES)
8 _pe_delay(1);

Processor 0 Processor 1

Busy waiting

phase: 1

done_pe[0]: 0

done_pe[1]: 1

Initialize the counter variable of next barrier
and keep the counter variable of current
barrier at the same time.

phase: 1

done_pe[0]: 0

done_pe[1]: 1

31 / 31

Conclusions & Future directions

When we translate global shared variables,
static memory allocation is 31% better than
dynamic memory allocation.
For the reduction implementation, temporary
buffer array method is 10% better than
temporary variable method.
We fixed previous harmful barrier
synchronization implementation.
Future directions
• MPSoC with Distributed Memory
• MPSoC with Heterogeneous processors (Ex. DSP)

	Efficient OpenMP Implementation and Translation�For Multiprocessor System-On-Chip�without Using OS
	Contents
	Background
	MPSoC�(Multiprocessor System-on-Chip)
	Parallel Programming Models
	OpenMP Overview
	OpenMP execution model : fork/join
	OpenMP programming environment
	Hybrid execution model
	Motivation
	Terminologies
	OpenMP implementation� on MPSoC configurations
	Possible OpenMP implementation on MPSoC configurations
	Shared memory� + OS with thread library
	Shared memory� + No OS
	Our OpenMP implementation and translation on a target multiprocessor system-on-chip platform
	CT3400 Architecture�(Cradle Technologies, Inc.)
	Initialization
	Parallelization
	Translation of global shared variables
	24*24 Matrix multiplication (cycles)
	Reduction (using temporary variable)
	Reduction�(using temporary buffer array)
	EPCC OpenMP micro-benchmark (cycles)
	Previous harmful barrier synchronization implementation (example error case)
	Previous harmful barrier synchronization implementation (example error case)
	Previous harmful barrier synchronization implementation (example error case)
	Previous harmful barrier synchronization implementation (example error case)
	Our barrier implementation
	Our barrier implementation
	Conclusions & Future directions

