A New Boundary Element Method for Multiple-Frequency Parameter Extraction of Lossy Substrates

Xiren Wang, Wenjian Yu, and Zeyi Wang

EDA Lab, Dept. of Computer Science & Technology, Tsinghua University Jan. 24, 2007

- Introduction of Substrate Coupling Problems
- High-Frequency Parameter Extraction Using Direct Boundary Element Method (DBEM)
- Efficient Techniques for Multi-Frequency Extraction
- Numerical Results
- Conclusions

Introduction of Substrate Coupling Problems

In mixed-signal circuits

- Digital and analog components are often built on a single lossy substrate (Si)
- Coupling noises traveling through the substrate severely impact the sensitive analog components

Introduction of Substrate Coupling Problems

- Modeling of substrate coupling
 - Substrate resistance among contacts

- At higher frequency, both resistive and capacitive couplings should be considered [TCAD'98]
- Extraction of substrate parameters becomes a challenging task

A.M. Niknejad, R. Gharpurey, and R.G. Meyer, "Numerically stable Green function for modeling and analysis of substrate coupling in integrated circuits," *IEEE Trans. CAD*, Vol. 17, pp. 305-315, 1998.

Numerical Methods for Substrate Extraction

- Volume discretization methods
 - Finite Element Method (FEM)
 - Finite Difference Method (FDM)

Advantage:

- Versatile for various kinds of substrate structures
 - Stratified, with multiple parallel horizontal layers
 - More complicated, e.g. those with oxide wells, trenches, sinkers, buried diffusions, shielding for noise reduction
- Disadvantage:
 - Too many unknowns
 - Then, limited to small structures

Numerical Methods for Substrate Extraction

- Green's function based methods (BEM)
 - Widely investigated
- Advantages:
 - Only discretizes contact surfaces, involves the fewest variables
 - Acceleration techniques proposed, such as DCT (discrete consine), eigen-decomposition, etc.
- Disadvantages:
 - The derivation of Green's function involves infinite series, which is expensive to calculate
 - Difficult, or even impossible to find the Green's function for non-stratified substrates

- Introduction of Substrate Coupling Problems
- High-Frequency Parameter Extraction Using DBEM
- Efficient Techniques for Multi-Frequency Extraction
- Numerical Results
- Conclusions

High-Frequency Model of Substrate

Consider both ohmic and displacement current; Each substrate material has a conductivity σ_i , and a permittivity \mathcal{E}_i .

Z denotes the coupling impedance between the contacts (including the plane).

Direct Boundary Element Method (DBEM)

- Discretizes substrate boundary,
 - Contact surface
 - Medium boundary/interface
- Uses the simple free-space Green's function
- Has no difficulty in handling non-stratified substrates

 Efficient techniques of unknown reduction and matrix sparsification have been proposed for substrate resistance extraction [TCAD'06]

X. Wang, W. Yu and Z. Wang, "Efficient direct boundary element method for resistance extraction of substrate with arbitrary doping profiles," IEEE Trans. Comput. Aided Design, vol. 25, pp. 3035-3042, 2006.

High-Freq. Parameter Extraction using DBEM

Within each medium

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$$

 Apply the Green's identities, with the weighting function of free-space Green's function

$$c_s u_s + \int_{\Gamma_i} q^* u d\Gamma = \int_{\Gamma_i} u^* q d\Gamma$$

u is electric potential, and q is its normal derivative on boundary

s is a collocation point;

 u^* is the free-space Green's function, and q^* is its normal derivative on boundary

- Get linear equations with unknowns of u and q on boundaries
- *u* or *q* has known values on the outer boundaries

High-Freq. Parameter Extraction using DBEM

Along the interface of medium a and b:

$$u_a = u_b$$
,
 $(\sigma_a + j\omega\varepsilon_a)E_{n,a} = (\sigma_b + j\omega\varepsilon_b)E_{n,b}$. For displacement current, reflects the high-freq. model

 The linear equations for each medium can be combined together, to get an overall linear system

AX = B A frequency-dependent complex-value system

To get whole impedance matrix, bias voltages are set on contacts, and **B** reflects these settings. **X** includes the unknowns of u and q on elements.

The current flowing through contact k is

$$\int_{\Gamma_k} (\sigma + j\omega\varepsilon) E_n d\Gamma = \frac{1}{Z_{mk}}$$
, if contact m is with 1V, and contact k 0V

- Introduction of Substrate Coupling Problems
- High-Frequency Parameter Extraction Using DBEM
- Efficient Techniques for Multi-Frequency Extraction
 - Extract substrate resistance (freq=0)
 - Perform one time
 - Revise solution of R extraction to freq.-dep. parameters
 With improving techniques, easy for computation
- Numerical Results
- Conclusions

Multi-Frequency Extraction of Substrate

- When consider both ohmic and displacement current, the substrate coupling parameter (Z) is frequency-dependent
- In DBEM calculation
 - Interface equation includes frequency and imaginary

 $(\sigma_a + j\omega\varepsilon_a)E_{n,a} = (\sigma_b + j\omega\varepsilon_b)E_{n,b}$

- Solve a frequency-dependent, complex-valued AX = B
- Get freq.-dependent R and C from the complex-valued Z
- The substrate parameters for many frequencies are necessary for the knowledge of substrate coupling
- The trivial approach to build and solve AX = B repeatedly loses its efficiency with the increase of frequency points
- We propose a fast method for the multi-frequency extraction

High Similarity of A_{res} and A

- Let A_{res} be the coefficient matrix for R extraction
- It's the equation for substrate resistance extraction, if we discard $j\omega\varepsilon$ items in $(\sigma_a + j\omega\varepsilon_a)E_{n,a} = (\sigma_b + j\omega\varepsilon_b)E_{n,b}$
- The differences between A_{res} and A lie on entries corresponding to q variables on interfaces

High Similarity of A_{res} and A (Cont.)

In mathematics,

 $A = A_{res} + UV^{\mathrm{T}}$

Where U is a submatrix of A_{res} , and V is a sparse diagonal matrix.

 $UV^{\mathrm{T}} = A - A_{res} = U \mathrm{x}$

 $f_{12} = (\sigma_2 + j\omega\varepsilon_2)/(\sigma_1 + j\omega\varepsilon_1), \quad r_{12} = \sigma_2/\sigma_1$ S₁₂, S₂₃ are matrices with entries calculated from the integrals of $\int_{\Gamma_{ik}} u^* d\Gamma$. I_1 and I_2 are identity matrices.

 V^{l}

15

Revise R to Frequency-Dependent Z

According to Sherman-Morrison-Woodbury formula,

$$A^{-1} = (A_{res} + UV^{T})^{-1}$$

= $A_{res}^{-1} - A_{res}^{-1}U(I + V^{T}A_{res}^{-1}U)^{-1}V^{T}A_{res}^{-1}$

$$\Rightarrow X = A^{-1}B = (A_{res} + UV^{T})^{-1}B$$

= $A_{res}^{-1}B - A_{res}^{-1}U(I + V^{T}A_{res}^{-1}U)^{-1}V^{T}A_{res}^{-1}B$
= $X_{res} - \{A_{res}^{-1}U(I + V^{T}A_{res}^{-1}U)^{-1}V^{T}\}X_{res}$

Thus, freq.-dept. solution (X) can be obtained through revising the solution for R extraction (X_{res})

Efficient Technique for $(I + V^{T}A_{res}^{-1}U)^{-1}$

$$X = X_{res} - A_{res}^{-1} U (I + V^T A_{res}^{-1} U)^{-1} V^T X_{res}$$

- Usually, difficult to get $(I + V^T A_{res}^{-1} U)^{-1}$
- U and V are sparse matrices, and so is $I + V^{T} A_{res}^{-1} U$

• For the three-medium example:

Algorithm Flow

- 1. Generate A_{res} in (5). Select some entries to form U;
- 2. Solve for $X_{res} = A_{res}^{-1}B$ as well as for $A_{res}^{-1}U$;
- 3. For each frequency point, calculate the corresponding Z:
 - a) Create such factors as $(f_{12}/r_{12}-1)I_1$ and $(f_{23}/r_{23}-1)I_2$, so as to form matrix V;
 - b) Compress $I + V^T A_{res}^{-1} U$ into small matrix M;
 - c) Inverse matrix M, and get W;
 - d) Refill W to get matrix $(I + V^T A_{res}^{-1} U)^{-1}$;

e) Get
$$X = X_{res} - A_{res}^{-1} U (I + V^T A_{res}^{-1} U)^{-1} V^T X_{res}$$

f) Get the desired *Z* parameter through (9).

The order of *M* is # of interface elements, which is much less than total # of unknowns

Solve the real-valued problem of R extraction; Runs only once.

- Introduction of Substrate Coupling Problems
- High-Frequency Parameter Extraction Using DBEM
- Efficient Techniques for Multi-Frequency Extraction
- Numerical Results
- Conclusions

Numerical Results -- Accuracy

The discrepancy between our results and those from [TCAD'98] < 1.0%

Since displacement current increases with frequency, the Z's magnitude decreases with frequency.

[TCAD'98] A.M. Niknejad, R. Gharpurey, and R.G. Meyer, "Numerically stable Green function for modeling and analysis of substrate coupling in integrated circuits," *IEEE Trans. CAD*, Vol. 17, pp. 305-315, 1998.

Side view

Numerical Results -- Efficiency

Case with 52 contacts

Our method is compared with ASITIC, a shared program using DCT-accelerated Green's function method

For each frequency, our method solves a 587x587 M matrix to calculate Z from the precalculated X_{res}

Our method is much faster than ASITIC

	DBEM		ASITIC
# Contacts	52		52
# Variables	7252	860	4352 (default)
Memory (MB)	60	32	310
Pre-process (seconds)	420.9 *	360**	360 **
Extraction (for 1 freq.)	9.0	9000	(Not obtained)

*: Calculate resistance

**: Calculate Green's function

Numerical Results -- Versatility

An example with non-stratified substrate

- The central block region has a distinct resistivity, called LVB (lateral variation block)
- LVB's resistivity is 1000 times larger
- Size of LVB is set to be 0, 20, and $70\mu m$
- Green's function based method is not able to handle it, while our DBEM has no difficulty
- Right figure shows the plot of Magnitude vs. frequency, for three settings

Since LVB obstructs ohmic current flow, the Z for L=70 is larger than those corresponding to other two settings

- Introduction of Substrate Coupling Problems
- High-Frequency Parameter Extraction Using DBEM
- Efficient Techniques for Multi-Frequency Extraction
- Numerical Results
- Conclusions

Conclusions

- For frequency-dependent substrate modeling, we propose an efficient method for multi-frequency extraction
 - Based on DBEM, has ability to handle non-stratified structure
 - Do not directly solve the complex linear system, but firstly solve the R extraction problem with real linear system
 - For each frequency, the result of R extraction is revised to Z parameter through solving a smaller linear system

The proposed method

- Is efficient
- Does not sacrifice accuracy
- Has large versatility

Thank you!

For more information, please contact:

yu-wj@tsinghua.edu.cn