A 0.35um CMOS 1,632-gate count Zero-Overhead Dynamic Optically Reconfigurable Gate Array VLSI

> Minoru Watanabe and Fuminori Kobayashi Department of Systems Innovation and Informatics Kyushu Institute of Technology, Japan

Dynamic Reconfiguration Advantage

Drawback of Conventional Programmable Devices

Drawback is based on LUT and transmission gate structure

Conventional Implementation

Multi-Functions Unit or General purpose Unit Dynamic reconfiguration Implementation

Single Function

Unit

Overview of optically reconfigurable gate array

Holographic Memory

- According to the latest paper, multi-layered wave-guide holographic memory can store 15.5Gbit in 0.23 cubic centimeter. (Appl. Opt., Vol. 42, No. 35, 7085 – 7092, 2003). The memory amount corresponds to 4G gate count program.
- 2) According to the prospect of a future holographic memory, one cubic centimeter holographic memory will store 1 terabit , corresponding to about 250 billion gate count.

Improved Dynamic Optical Reconfiguration Circuit

New circuit consists of a DORC and a pass transistor.

The pass transistor is used for blocking off the connection between reconfiguration circuit and gate array circuit.

The load capacitance is used for keeping the gate array state.

The load capacitance is sufficient to maintain the state of gate array while reconfiguring.

Gate Array Design

An ORGA takes Island-Style gate array. The basic structure is same as that of current FPGAs. However, each programming element of the gate array is connected to a photodiode. Thereby, all state of the gate array can be programmed in perfectly parallel.

1,632 gate count ZO-DORGA-VLSI

Specification of a DORGA-VLSI

Technology	0.35 μm double-poly
	triple-metal CMOS process
Chip size	4.9 × 4.9 [mm]
Supply Voltage	Core 3.3V, I/O 3.3V
Photodiode size	$9.5 imes 8.8 \ [\mu m]$
Horizontal Distance	
between Photodiodes	34.5 [µm]
Vertical Distance	
betweenPhotodiodes	33.0 [µm]
Number of	
Photodiodes	6,213
Av. Aperture Ratio	4.24%
Number of	
Logic Blocks	48
Number of	
Switching Matrices	63
Number of Wires	
in a Routing Channel	8
Number of	
I/O bits	24
Gate Count	1,632

Photograph of a DORGA-VLSI

Design of a future high density DORGA

											化化学学 化化学学 化化学学 化化学学 化化学学 化化学学 化化学学 化分子								a di kataka kataka kataka kataka kataka kataka di kataka kataka kataka kataka kataka kataka kataka kataka kata

CAD Layout of a ZO-ORGA

Specifications of a ZO-ORGA

Technology	0.35 µ m 3-me talC MOS process
Chip size	9.8 × 9.8 [mm ²]
Photodiodesize	9.5 × 8.8 [µm ²]
Horizon tal d is tan ce	34.5 [µm]
between photodiodes	••••••
Vertic al d istan c e	
between photodiodes	33.0 [µm]
Number of	
Photodiodes	38,591
Number of	
Logic Blocks	336
Number of	
Switching Matrices	375
Number of	
I/O Blocks	8 (32bit)
Wiring channel	8
Gate Count	11,424 gates

Conclusion

·This presentation presents

(a) the design of a fabricated world's largest 1,632 gate count ZO-DORGA-VLSI,

(b) an over 10,000 gate count VLSI by using 9.8mm square CMOS process chip and same logic blocks and switching matrices.

Acknowledgments

This research was partially supported by the project of development of high-density optically and partially reconfigurable gate arrays under Japan Science and Technology Agency, funds from the MEXT via Kitakyushu and Fukuoka innovative cluster projects, and the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), 18760256, 2006. The VLSI chip in this study was fabricated in the chip fabrication program of VLSI Design and Education Center (VDEC), the University of Tokyo in collaboration with Rohm Co. Ltd. and Toppan Printing Co. Ltd.