On-Chip Balun In Up-Conversion Mixer For Vehicular Radar Systems Implemented with 90nm CMOS Process

Ivan C.H. LAI and Minoru Fujishima
The University of Tokyo

Introduction

- Function of a balun
 - BALanced-to-UNbalanced conversion

For the case of the combiner. For splitter, directions are reversed.

- Use with differential circuits
- Existing implementations of baluns
 - Off-chip
 - On-chip (CMOS)

On-chip Marchand Balun

The drain biasing is applied to the differential ports across the lower metal that does not require any voltage headroom

Inter-layer metal coupling is used for realizing the balun

Balun Measured Results

Balun operating range: 22.4 GHz and 37.3 GHz

24 Jan 2007 ASP-DAC

4

22-29 GHz Mixer Circuit

Baluns practical with CMOS that consumes minimal area are considered

Mixer Measured Results

RF port matching better than -10dB at 20~26 GHz

Mixer Measured Results

1-dB compression point occurs at -14.8dBm

7

Mixer Measured Results

Power consumption can be reduced to 8.4mW

8

Chip Micrograph

DC supply voltage \prod

LO balun single-ended input

LO Input

LO balun (top pad metal)

RF balun single-ended output

⇒ RF Output

RF balun (top pad metal)

IF Input 1

Conclusion

- An on-chip balun is designed and simulated for the up-conversion mixer
- High GHz frequency Mixer has been implemented using CMOS 90nm process